Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography
Deep learning has been actively investigated for various applications such as image classification, computer vision, and regression tasks, and it has shown state-of-the-art performance. In diffuse optical tomography (DOT), the accurate estimation of the bulk optical properties of a medium is paramou...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2020-02, Vol.59 (5), p.1461-1470 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1470 |
---|---|
container_issue | 5 |
container_start_page | 1461 |
container_title | Applied optics (2004) |
container_volume | 59 |
creator | Sabir, Sohail Cho, Sanghoon Kim, Yejin Pua, Rizza Heo, Duchang Kim, Kee Hyun Choi, Youngwook Cho, Seungryong |
description | Deep learning has been actively investigated for various applications such as image classification, computer vision, and regression tasks, and it has shown state-of-the-art performance. In diffuse optical tomography (DOT), the accurate estimation of the bulk optical properties of a medium is paramount because it directly affects the overall image quality. In this work, we exploit deep learning to propose a novel, to the best of our knowledge, convolutional neural network (CNN)-based approach to estimate the bulk optical properties of a highly scattering medium such as biological tissue in DOT. We validated the proposed method by using experimental, as well as, simulated data. For performance assessment, we compared the results of the proposed method with those of existing approaches. The results demonstrate that the proposed CNN-based approach for bulk optical property estimation outperforms existing methods in terms of estimation accuracy, with lower computation time. |
doi_str_mv | 10.1364/AO.377810 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2384843156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355948695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ff384d72acdada9daebd7149d3728cae8c919c3db45f637b4be22d22cd09bcec3</originalsourceid><addsrcrecordid>eNpdkUtLw0AUhQdRbK0u_AMy4EYXqZlXklmW4guEbhTchXnFpk0ycWai9N87tbULV-fC_TgczgHgEqVTRDJ6N1tMSZ4XKD0CY4wYSwjK2DEYx5MnCBfvI3Dm_SpNCaM8PwUjgjFmNGVj0M5t92WbIdS2Ew3szOB-JXxbt06k8EZD0ffOCrWEwULjQ92KYKAcmjW0fahV5OO_Ny7UxsO6g7quqsGbwzfY1n440S835-CkEo03F3udgLeH-9f5U_KyeHyez14SRXIekqoiBdU5FkoLLbgWRuocUa5JjgslTKE44opoSVmVkVxSaTDWGCudcqmMIhNws_ONwT6HmLlsa69M04jO2MGXOPoXlCCWRfT6H7qyg4tdbKnYHy0yziJ1u6OUs947U5W9iz24TYnScrtBOVuUuw0ie7V3HGRr9IH8K538APqyhE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355948695</pqid></control><display><type>article</type><title>Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Sabir, Sohail ; Cho, Sanghoon ; Kim, Yejin ; Pua, Rizza ; Heo, Duchang ; Kim, Kee Hyun ; Choi, Youngwook ; Cho, Seungryong</creator><creatorcontrib>Sabir, Sohail ; Cho, Sanghoon ; Kim, Yejin ; Pua, Rizza ; Heo, Duchang ; Kim, Kee Hyun ; Choi, Youngwook ; Cho, Seungryong</creatorcontrib><description>Deep learning has been actively investigated for various applications such as image classification, computer vision, and regression tasks, and it has shown state-of-the-art performance. In diffuse optical tomography (DOT), the accurate estimation of the bulk optical properties of a medium is paramount because it directly affects the overall image quality. In this work, we exploit deep learning to propose a novel, to the best of our knowledge, convolutional neural network (CNN)-based approach to estimate the bulk optical properties of a highly scattering medium such as biological tissue in DOT. We validated the proposed method by using experimental, as well as, simulated data. For performance assessment, we compared the results of the proposed method with those of existing approaches. The results demonstrate that the proposed CNN-based approach for bulk optical property estimation outperforms existing methods in terms of estimation accuracy, with lower computation time.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.377810</identifier><identifier>PMID: 32225405</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Artificial neural networks ; Breast - diagnostic imaging ; Computer Simulation ; Computer vision ; Deep Learning ; Humans ; Image classification ; Image Processing, Computer-Assisted ; Image quality ; Light ; Machine learning ; Models, Theoretical ; Neural networks ; Optical properties ; Performance assessment ; Scattering, Radiation ; Time Factors ; Tissues ; Tomography ; Tomography, Optical - methods</subject><ispartof>Applied optics (2004), 2020-02, Vol.59 (5), p.1461-1470</ispartof><rights>Copyright Optical Society of America Feb 10, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ff384d72acdada9daebd7149d3728cae8c919c3db45f637b4be22d22cd09bcec3</citedby><cites>FETCH-LOGICAL-c379t-ff384d72acdada9daebd7149d3728cae8c919c3db45f637b4be22d22cd09bcec3</cites><orcidid>0000-0002-9790-4174 ; 0000-0002-9409-3628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3257,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32225405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabir, Sohail</creatorcontrib><creatorcontrib>Cho, Sanghoon</creatorcontrib><creatorcontrib>Kim, Yejin</creatorcontrib><creatorcontrib>Pua, Rizza</creatorcontrib><creatorcontrib>Heo, Duchang</creatorcontrib><creatorcontrib>Kim, Kee Hyun</creatorcontrib><creatorcontrib>Choi, Youngwook</creatorcontrib><creatorcontrib>Cho, Seungryong</creatorcontrib><title>Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Deep learning has been actively investigated for various applications such as image classification, computer vision, and regression tasks, and it has shown state-of-the-art performance. In diffuse optical tomography (DOT), the accurate estimation of the bulk optical properties of a medium is paramount because it directly affects the overall image quality. In this work, we exploit deep learning to propose a novel, to the best of our knowledge, convolutional neural network (CNN)-based approach to estimate the bulk optical properties of a highly scattering medium such as biological tissue in DOT. We validated the proposed method by using experimental, as well as, simulated data. For performance assessment, we compared the results of the proposed method with those of existing approaches. The results demonstrate that the proposed CNN-based approach for bulk optical property estimation outperforms existing methods in terms of estimation accuracy, with lower computation time.</description><subject>Artificial neural networks</subject><subject>Breast - diagnostic imaging</subject><subject>Computer Simulation</subject><subject>Computer vision</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image quality</subject><subject>Light</subject><subject>Machine learning</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Optical properties</subject><subject>Performance assessment</subject><subject>Scattering, Radiation</subject><subject>Time Factors</subject><subject>Tissues</subject><subject>Tomography</subject><subject>Tomography, Optical - methods</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLw0AUhQdRbK0u_AMy4EYXqZlXklmW4guEbhTchXnFpk0ycWai9N87tbULV-fC_TgczgHgEqVTRDJ6N1tMSZ4XKD0CY4wYSwjK2DEYx5MnCBfvI3Dm_SpNCaM8PwUjgjFmNGVj0M5t92WbIdS2Ew3szOB-JXxbt06k8EZD0ffOCrWEwULjQ92KYKAcmjW0fahV5OO_Ny7UxsO6g7quqsGbwzfY1n440S835-CkEo03F3udgLeH-9f5U_KyeHyez14SRXIekqoiBdU5FkoLLbgWRuocUa5JjgslTKE44opoSVmVkVxSaTDWGCudcqmMIhNws_ONwT6HmLlsa69M04jO2MGXOPoXlCCWRfT6H7qyg4tdbKnYHy0yziJ1u6OUs947U5W9iz24TYnScrtBOVuUuw0ie7V3HGRr9IH8K538APqyhE8</recordid><startdate>20200210</startdate><enddate>20200210</enddate><creator>Sabir, Sohail</creator><creator>Cho, Sanghoon</creator><creator>Kim, Yejin</creator><creator>Pua, Rizza</creator><creator>Heo, Duchang</creator><creator>Kim, Kee Hyun</creator><creator>Choi, Youngwook</creator><creator>Cho, Seungryong</creator><general>Optical Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9790-4174</orcidid><orcidid>https://orcid.org/0000-0002-9409-3628</orcidid></search><sort><creationdate>20200210</creationdate><title>Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography</title><author>Sabir, Sohail ; Cho, Sanghoon ; Kim, Yejin ; Pua, Rizza ; Heo, Duchang ; Kim, Kee Hyun ; Choi, Youngwook ; Cho, Seungryong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ff384d72acdada9daebd7149d3728cae8c919c3db45f637b4be22d22cd09bcec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Breast - diagnostic imaging</topic><topic>Computer Simulation</topic><topic>Computer vision</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image quality</topic><topic>Light</topic><topic>Machine learning</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Optical properties</topic><topic>Performance assessment</topic><topic>Scattering, Radiation</topic><topic>Time Factors</topic><topic>Tissues</topic><topic>Tomography</topic><topic>Tomography, Optical - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabir, Sohail</creatorcontrib><creatorcontrib>Cho, Sanghoon</creatorcontrib><creatorcontrib>Kim, Yejin</creatorcontrib><creatorcontrib>Pua, Rizza</creatorcontrib><creatorcontrib>Heo, Duchang</creatorcontrib><creatorcontrib>Kim, Kee Hyun</creatorcontrib><creatorcontrib>Choi, Youngwook</creatorcontrib><creatorcontrib>Cho, Seungryong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabir, Sohail</au><au>Cho, Sanghoon</au><au>Kim, Yejin</au><au>Pua, Rizza</au><au>Heo, Duchang</au><au>Kim, Kee Hyun</au><au>Choi, Youngwook</au><au>Cho, Seungryong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2020-02-10</date><risdate>2020</risdate><volume>59</volume><issue>5</issue><spage>1461</spage><epage>1470</epage><pages>1461-1470</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>Deep learning has been actively investigated for various applications such as image classification, computer vision, and regression tasks, and it has shown state-of-the-art performance. In diffuse optical tomography (DOT), the accurate estimation of the bulk optical properties of a medium is paramount because it directly affects the overall image quality. In this work, we exploit deep learning to propose a novel, to the best of our knowledge, convolutional neural network (CNN)-based approach to estimate the bulk optical properties of a highly scattering medium such as biological tissue in DOT. We validated the proposed method by using experimental, as well as, simulated data. For performance assessment, we compared the results of the proposed method with those of existing approaches. The results demonstrate that the proposed CNN-based approach for bulk optical property estimation outperforms existing methods in terms of estimation accuracy, with lower computation time.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>32225405</pmid><doi>10.1364/AO.377810</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9790-4174</orcidid><orcidid>https://orcid.org/0000-0002-9409-3628</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2020-02, Vol.59 (5), p.1461-1470 |
issn | 1559-128X 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_2384843156 |
source | MEDLINE; Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Artificial neural networks Breast - diagnostic imaging Computer Simulation Computer vision Deep Learning Humans Image classification Image Processing, Computer-Assisted Image quality Light Machine learning Models, Theoretical Neural networks Optical properties Performance assessment Scattering, Radiation Time Factors Tissues Tomography Tomography, Optical - methods |
title | Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20neural%20network-based%20approach%20to%20estimate%20bulk%20optical%20properties%20in%20diffuse%20optical%20tomography&rft.jtitle=Applied%20optics%20(2004)&rft.au=Sabir,%20Sohail&rft.date=2020-02-10&rft.volume=59&rft.issue=5&rft.spage=1461&rft.epage=1470&rft.pages=1461-1470&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.377810&rft_dat=%3Cproquest_cross%3E2355948695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355948695&rft_id=info:pmid/32225405&rfr_iscdi=true |