Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography

Deep learning has been actively investigated for various applications such as image classification, computer vision, and regression tasks, and it has shown state-of-the-art performance. In diffuse optical tomography (DOT), the accurate estimation of the bulk optical properties of a medium is paramou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2020-02, Vol.59 (5), p.1461-1470
Hauptverfasser: Sabir, Sohail, Cho, Sanghoon, Kim, Yejin, Pua, Rizza, Heo, Duchang, Kim, Kee Hyun, Choi, Youngwook, Cho, Seungryong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1470
container_issue 5
container_start_page 1461
container_title Applied optics (2004)
container_volume 59
creator Sabir, Sohail
Cho, Sanghoon
Kim, Yejin
Pua, Rizza
Heo, Duchang
Kim, Kee Hyun
Choi, Youngwook
Cho, Seungryong
description Deep learning has been actively investigated for various applications such as image classification, computer vision, and regression tasks, and it has shown state-of-the-art performance. In diffuse optical tomography (DOT), the accurate estimation of the bulk optical properties of a medium is paramount because it directly affects the overall image quality. In this work, we exploit deep learning to propose a novel, to the best of our knowledge, convolutional neural network (CNN)-based approach to estimate the bulk optical properties of a highly scattering medium such as biological tissue in DOT. We validated the proposed method by using experimental, as well as, simulated data. For performance assessment, we compared the results of the proposed method with those of existing approaches. The results demonstrate that the proposed CNN-based approach for bulk optical property estimation outperforms existing methods in terms of estimation accuracy, with lower computation time.
doi_str_mv 10.1364/AO.377810
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2384843156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355948695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ff384d72acdada9daebd7149d3728cae8c919c3db45f637b4be22d22cd09bcec3</originalsourceid><addsrcrecordid>eNpdkUtLw0AUhQdRbK0u_AMy4EYXqZlXklmW4guEbhTchXnFpk0ycWai9N87tbULV-fC_TgczgHgEqVTRDJ6N1tMSZ4XKD0CY4wYSwjK2DEYx5MnCBfvI3Dm_SpNCaM8PwUjgjFmNGVj0M5t92WbIdS2Ew3szOB-JXxbt06k8EZD0ffOCrWEwULjQ92KYKAcmjW0fahV5OO_Ny7UxsO6g7quqsGbwzfY1n440S835-CkEo03F3udgLeH-9f5U_KyeHyez14SRXIekqoiBdU5FkoLLbgWRuocUa5JjgslTKE44opoSVmVkVxSaTDWGCudcqmMIhNws_ONwT6HmLlsa69M04jO2MGXOPoXlCCWRfT6H7qyg4tdbKnYHy0yziJ1u6OUs947U5W9iz24TYnScrtBOVuUuw0ie7V3HGRr9IH8K538APqyhE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355948695</pqid></control><display><type>article</type><title>Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Sabir, Sohail ; Cho, Sanghoon ; Kim, Yejin ; Pua, Rizza ; Heo, Duchang ; Kim, Kee Hyun ; Choi, Youngwook ; Cho, Seungryong</creator><creatorcontrib>Sabir, Sohail ; Cho, Sanghoon ; Kim, Yejin ; Pua, Rizza ; Heo, Duchang ; Kim, Kee Hyun ; Choi, Youngwook ; Cho, Seungryong</creatorcontrib><description>Deep learning has been actively investigated for various applications such as image classification, computer vision, and regression tasks, and it has shown state-of-the-art performance. In diffuse optical tomography (DOT), the accurate estimation of the bulk optical properties of a medium is paramount because it directly affects the overall image quality. In this work, we exploit deep learning to propose a novel, to the best of our knowledge, convolutional neural network (CNN)-based approach to estimate the bulk optical properties of a highly scattering medium such as biological tissue in DOT. We validated the proposed method by using experimental, as well as, simulated data. For performance assessment, we compared the results of the proposed method with those of existing approaches. The results demonstrate that the proposed CNN-based approach for bulk optical property estimation outperforms existing methods in terms of estimation accuracy, with lower computation time.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.377810</identifier><identifier>PMID: 32225405</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Artificial neural networks ; Breast - diagnostic imaging ; Computer Simulation ; Computer vision ; Deep Learning ; Humans ; Image classification ; Image Processing, Computer-Assisted ; Image quality ; Light ; Machine learning ; Models, Theoretical ; Neural networks ; Optical properties ; Performance assessment ; Scattering, Radiation ; Time Factors ; Tissues ; Tomography ; Tomography, Optical - methods</subject><ispartof>Applied optics (2004), 2020-02, Vol.59 (5), p.1461-1470</ispartof><rights>Copyright Optical Society of America Feb 10, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ff384d72acdada9daebd7149d3728cae8c919c3db45f637b4be22d22cd09bcec3</citedby><cites>FETCH-LOGICAL-c379t-ff384d72acdada9daebd7149d3728cae8c919c3db45f637b4be22d22cd09bcec3</cites><orcidid>0000-0002-9790-4174 ; 0000-0002-9409-3628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3257,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32225405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabir, Sohail</creatorcontrib><creatorcontrib>Cho, Sanghoon</creatorcontrib><creatorcontrib>Kim, Yejin</creatorcontrib><creatorcontrib>Pua, Rizza</creatorcontrib><creatorcontrib>Heo, Duchang</creatorcontrib><creatorcontrib>Kim, Kee Hyun</creatorcontrib><creatorcontrib>Choi, Youngwook</creatorcontrib><creatorcontrib>Cho, Seungryong</creatorcontrib><title>Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Deep learning has been actively investigated for various applications such as image classification, computer vision, and regression tasks, and it has shown state-of-the-art performance. In diffuse optical tomography (DOT), the accurate estimation of the bulk optical properties of a medium is paramount because it directly affects the overall image quality. In this work, we exploit deep learning to propose a novel, to the best of our knowledge, convolutional neural network (CNN)-based approach to estimate the bulk optical properties of a highly scattering medium such as biological tissue in DOT. We validated the proposed method by using experimental, as well as, simulated data. For performance assessment, we compared the results of the proposed method with those of existing approaches. The results demonstrate that the proposed CNN-based approach for bulk optical property estimation outperforms existing methods in terms of estimation accuracy, with lower computation time.</description><subject>Artificial neural networks</subject><subject>Breast - diagnostic imaging</subject><subject>Computer Simulation</subject><subject>Computer vision</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image quality</subject><subject>Light</subject><subject>Machine learning</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Optical properties</subject><subject>Performance assessment</subject><subject>Scattering, Radiation</subject><subject>Time Factors</subject><subject>Tissues</subject><subject>Tomography</subject><subject>Tomography, Optical - methods</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLw0AUhQdRbK0u_AMy4EYXqZlXklmW4guEbhTchXnFpk0ycWai9N87tbULV-fC_TgczgHgEqVTRDJ6N1tMSZ4XKD0CY4wYSwjK2DEYx5MnCBfvI3Dm_SpNCaM8PwUjgjFmNGVj0M5t92WbIdS2Ew3szOB-JXxbt06k8EZD0ffOCrWEwULjQ92KYKAcmjW0fahV5OO_Ny7UxsO6g7quqsGbwzfY1n440S835-CkEo03F3udgLeH-9f5U_KyeHyez14SRXIekqoiBdU5FkoLLbgWRuocUa5JjgslTKE44opoSVmVkVxSaTDWGCudcqmMIhNws_ONwT6HmLlsa69M04jO2MGXOPoXlCCWRfT6H7qyg4tdbKnYHy0yziJ1u6OUs947U5W9iz24TYnScrtBOVuUuw0ie7V3HGRr9IH8K538APqyhE8</recordid><startdate>20200210</startdate><enddate>20200210</enddate><creator>Sabir, Sohail</creator><creator>Cho, Sanghoon</creator><creator>Kim, Yejin</creator><creator>Pua, Rizza</creator><creator>Heo, Duchang</creator><creator>Kim, Kee Hyun</creator><creator>Choi, Youngwook</creator><creator>Cho, Seungryong</creator><general>Optical Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9790-4174</orcidid><orcidid>https://orcid.org/0000-0002-9409-3628</orcidid></search><sort><creationdate>20200210</creationdate><title>Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography</title><author>Sabir, Sohail ; Cho, Sanghoon ; Kim, Yejin ; Pua, Rizza ; Heo, Duchang ; Kim, Kee Hyun ; Choi, Youngwook ; Cho, Seungryong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ff384d72acdada9daebd7149d3728cae8c919c3db45f637b4be22d22cd09bcec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Breast - diagnostic imaging</topic><topic>Computer Simulation</topic><topic>Computer vision</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image quality</topic><topic>Light</topic><topic>Machine learning</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Optical properties</topic><topic>Performance assessment</topic><topic>Scattering, Radiation</topic><topic>Time Factors</topic><topic>Tissues</topic><topic>Tomography</topic><topic>Tomography, Optical - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabir, Sohail</creatorcontrib><creatorcontrib>Cho, Sanghoon</creatorcontrib><creatorcontrib>Kim, Yejin</creatorcontrib><creatorcontrib>Pua, Rizza</creatorcontrib><creatorcontrib>Heo, Duchang</creatorcontrib><creatorcontrib>Kim, Kee Hyun</creatorcontrib><creatorcontrib>Choi, Youngwook</creatorcontrib><creatorcontrib>Cho, Seungryong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabir, Sohail</au><au>Cho, Sanghoon</au><au>Kim, Yejin</au><au>Pua, Rizza</au><au>Heo, Duchang</au><au>Kim, Kee Hyun</au><au>Choi, Youngwook</au><au>Cho, Seungryong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2020-02-10</date><risdate>2020</risdate><volume>59</volume><issue>5</issue><spage>1461</spage><epage>1470</epage><pages>1461-1470</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>Deep learning has been actively investigated for various applications such as image classification, computer vision, and regression tasks, and it has shown state-of-the-art performance. In diffuse optical tomography (DOT), the accurate estimation of the bulk optical properties of a medium is paramount because it directly affects the overall image quality. In this work, we exploit deep learning to propose a novel, to the best of our knowledge, convolutional neural network (CNN)-based approach to estimate the bulk optical properties of a highly scattering medium such as biological tissue in DOT. We validated the proposed method by using experimental, as well as, simulated data. For performance assessment, we compared the results of the proposed method with those of existing approaches. The results demonstrate that the proposed CNN-based approach for bulk optical property estimation outperforms existing methods in terms of estimation accuracy, with lower computation time.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>32225405</pmid><doi>10.1364/AO.377810</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9790-4174</orcidid><orcidid>https://orcid.org/0000-0002-9409-3628</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2020-02, Vol.59 (5), p.1461-1470
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2384843156
source MEDLINE; Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Artificial neural networks
Breast - diagnostic imaging
Computer Simulation
Computer vision
Deep Learning
Humans
Image classification
Image Processing, Computer-Assisted
Image quality
Light
Machine learning
Models, Theoretical
Neural networks
Optical properties
Performance assessment
Scattering, Radiation
Time Factors
Tissues
Tomography
Tomography, Optical - methods
title Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20neural%20network-based%20approach%20to%20estimate%20bulk%20optical%20properties%20in%20diffuse%20optical%20tomography&rft.jtitle=Applied%20optics%20(2004)&rft.au=Sabir,%20Sohail&rft.date=2020-02-10&rft.volume=59&rft.issue=5&rft.spage=1461&rft.epage=1470&rft.pages=1461-1470&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.377810&rft_dat=%3Cproquest_cross%3E2355948695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355948695&rft_id=info:pmid/32225405&rfr_iscdi=true