Optical frequency distribution using laser repeater stations with planar lightwave circuits
We report a cascaded optical fiber link which connects laboratories in RIKEN, the University of Tokyo, and NTT within a 100-km region using a transfer light at 1397 nm, a subharmonic of the Sr clock frequency. The multiple cascaded link employing several laser repeater stations benefits from a wide...
Gespeichert in:
Veröffentlicht in: | Optics express 2020-03, Vol.28 (7), p.9186-9197 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a cascaded optical fiber link which connects laboratories in RIKEN, the University of Tokyo, and NTT within a 100-km region using a transfer light at 1397 nm, a subharmonic of the Sr clock frequency. The multiple cascaded link employing several laser repeater stations benefits from a wide feedback bandwidth for fiber noise compensation, which allows constructing optical lattice clock networks based on the master-slave configuration. We developed the laser repeater stations based on planar lightwave circuits to significantly reduce the interferometer noise for improved link stability. We implemented a 240-km-long cascaded link in a UTokyo-NTT-UTokyo loop using light sent from RIKEN via a 30-km-long link. In environments with large fiber noise, the link instability is 3 × 10
at an averaging time of 1 s and reaches 1 × 10
at 2,600 s. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.383526 |