Geographical Origin Classification of Chinese Wines Based on Carbon and Oxygen Stable Isotopes and Elemental Profiles

Wines from different regions have different qualities due to the impact of geographical location and climate. The sale of inferior wines seriously violates the fair-trade rights of consumers. This article provides an elemental analysis classification method for verifying the geographical origin of w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food protection 2020-08, Vol.83 (8), p.1323-1334
Hauptverfasser: Su, Ying-Yue, Gao, Jie, Zhao, Yong-Fang, Wen, Hao-Song, Zhang, Jin-Jie, Zhang, Ang, Yuan, Chun-Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1334
container_issue 8
container_start_page 1323
container_title Journal of food protection
container_volume 83
creator Su, Ying-Yue
Gao, Jie
Zhao, Yong-Fang
Wen, Hao-Song
Zhang, Jin-Jie
Zhang, Ang
Yuan, Chun-Long
description Wines from different regions have different qualities due to the impact of geographical location and climate. The sale of inferior wines seriously violates the fair-trade rights of consumers. This article provides an elemental analysis classification method for verifying the geographical origin of wines in the People's Republic of China. Inductively coupled plasma mass spectrometry, liquid chromatography isotope ratio mass spectrometry, and an isotope ratio mass spectrometer were used to analyze 142 wine samples collected from Helan Mountain, Xinjiang, Yunchuanzang, the Yanhuai Valley, and the Hexi Corridor regions. The data included elemental profiles, carbon isotope ratios (δ13C), and oxygen isotope ratios (δ18O). The results of multivariate analysis revealed that the geographical origin of wine is closely related to variations in elemental profiles and isotope ratios. Introducing δ18O and the elements Li, Mn, Ag, In, Th, Ta, and Re into the discriminant model yielded correct classification rates of the linear discriminant model of 90.8% for the training set and 87.3% for the test set.
doi_str_mv 10.4315/JFP-19-499
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2384204112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384204112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-b94f429f4cd2b9bdb90989df528f15b6ceafdcaa2dd6879cb082114a22c39c813</originalsourceid><addsrcrecordid>eNpdkU9rGzEQxUVJqZ2kl36AIMilBLaRRtrN6pgusZsScCAJ6U3or6OwXjnSLjTfvjJ2e-jpwbwfj5l5CH2h5BtntL78ubivqKi4EB_QnArOK0HE1RGaE9ZARaD9NUPHOb8SQkBA8wnNGADQGsQcTUsX10ltX4JRPV6lsA4D7nqVc_BlNIY44Ohx9xIGlx1-3gn-rrKzuDidSrqIGixe_X5fuwE_jEr3Dt_mOMZtQXfWTe82bhhL_n2KPvQun6KPXvXZfT7oCXpa3Dx2P6q71fK2u76rDKvpWGnBPQfhubGghba63NUK62toPa11Y5zy1igF1jbtlTCatEApVwCGCdNSdoK-7nO3Kb5NLo9yE7Jxfa8GF6csgbUcCKcUCnr-H_oapzSU7STwpiG8Zg0v1MWeMinmnJyX2xQ2Kr1LSuSuDFnKkFTIUkaBzw6Rk944-w_9-332B2VLhOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466045364</pqid></control><display><type>article</type><title>Geographical Origin Classification of Chinese Wines Based on Carbon and Oxygen Stable Isotopes and Elemental Profiles</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><creator>Su, Ying-Yue ; Gao, Jie ; Zhao, Yong-Fang ; Wen, Hao-Song ; Zhang, Jin-Jie ; Zhang, Ang ; Yuan, Chun-Long</creator><creatorcontrib>Su, Ying-Yue ; Gao, Jie ; Zhao, Yong-Fang ; Wen, Hao-Song ; Zhang, Jin-Jie ; Zhang, Ang ; Yuan, Chun-Long</creatorcontrib><description>Wines from different regions have different qualities due to the impact of geographical location and climate. The sale of inferior wines seriously violates the fair-trade rights of consumers. This article provides an elemental analysis classification method for verifying the geographical origin of wines in the People's Republic of China. Inductively coupled plasma mass spectrometry, liquid chromatography isotope ratio mass spectrometry, and an isotope ratio mass spectrometer were used to analyze 142 wine samples collected from Helan Mountain, Xinjiang, Yunchuanzang, the Yanhuai Valley, and the Hexi Corridor regions. The data included elemental profiles, carbon isotope ratios (δ13C), and oxygen isotope ratios (δ18O). The results of multivariate analysis revealed that the geographical origin of wine is closely related to variations in elemental profiles and isotope ratios. Introducing δ18O and the elements Li, Mn, Ag, In, Th, Ta, and Re into the discriminant model yielded correct classification rates of the linear discriminant model of 90.8% for the training set and 87.3% for the test set.</description><identifier>ISSN: 0362-028X</identifier><identifier>EISSN: 1944-9097</identifier><identifier>DOI: 10.4315/JFP-19-499</identifier><identifier>PMID: 32221529</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Carbon ; Carbon isotopes ; Chemical elements ; China ; Chromatography ; Classification ; Consumption ; Discriminant analysis ; Ethanol ; Fermentation ; Food safety ; Geographical distribution ; Geographical locations ; Humans ; Inductively coupled plasma mass spectrometry ; Isotope ratios ; Isotopes ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Methods ; Minerals ; Mountains ; Multivariate analysis ; Oxygen ; Oxygen isotopes ; Oxygen Isotopes - analysis ; Principal components analysis ; Scientific imaging ; Spectroscopy ; Stable isotopes ; Trace Elements - analysis ; Valleys ; Wine - analysis ; Wineries &amp; vineyards ; Wines</subject><ispartof>Journal of food protection, 2020-08, Vol.83 (8), p.1323-1334</ispartof><rights>Copyright ©, International Association for Food Protection.</rights><rights>Copyright Allen Press Inc. Aug 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-b94f429f4cd2b9bdb90989df528f15b6ceafdcaa2dd6879cb082114a22c39c813</citedby><cites>FETCH-LOGICAL-c351t-b94f429f4cd2b9bdb90989df528f15b6ceafdcaa2dd6879cb082114a22c39c813</cites><orcidid>0000-0002-8416-8235 ; 0000-0002-0561-8286 ; 0000-0002-1955-1430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2466045364?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,64374,64376,64378,72230</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32221529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Ying-Yue</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Zhao, Yong-Fang</creatorcontrib><creatorcontrib>Wen, Hao-Song</creatorcontrib><creatorcontrib>Zhang, Jin-Jie</creatorcontrib><creatorcontrib>Zhang, Ang</creatorcontrib><creatorcontrib>Yuan, Chun-Long</creatorcontrib><title>Geographical Origin Classification of Chinese Wines Based on Carbon and Oxygen Stable Isotopes and Elemental Profiles</title><title>Journal of food protection</title><addtitle>J Food Prot</addtitle><description>Wines from different regions have different qualities due to the impact of geographical location and climate. The sale of inferior wines seriously violates the fair-trade rights of consumers. This article provides an elemental analysis classification method for verifying the geographical origin of wines in the People's Republic of China. Inductively coupled plasma mass spectrometry, liquid chromatography isotope ratio mass spectrometry, and an isotope ratio mass spectrometer were used to analyze 142 wine samples collected from Helan Mountain, Xinjiang, Yunchuanzang, the Yanhuai Valley, and the Hexi Corridor regions. The data included elemental profiles, carbon isotope ratios (δ13C), and oxygen isotope ratios (δ18O). The results of multivariate analysis revealed that the geographical origin of wine is closely related to variations in elemental profiles and isotope ratios. Introducing δ18O and the elements Li, Mn, Ag, In, Th, Ta, and Re into the discriminant model yielded correct classification rates of the linear discriminant model of 90.8% for the training set and 87.3% for the test set.</description><subject>Carbon</subject><subject>Carbon isotopes</subject><subject>Chemical elements</subject><subject>China</subject><subject>Chromatography</subject><subject>Classification</subject><subject>Consumption</subject><subject>Discriminant analysis</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Food safety</subject><subject>Geographical distribution</subject><subject>Geographical locations</subject><subject>Humans</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Isotope ratios</subject><subject>Isotopes</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Methods</subject><subject>Minerals</subject><subject>Mountains</subject><subject>Multivariate analysis</subject><subject>Oxygen</subject><subject>Oxygen isotopes</subject><subject>Oxygen Isotopes - analysis</subject><subject>Principal components analysis</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Stable isotopes</subject><subject>Trace Elements - analysis</subject><subject>Valleys</subject><subject>Wine - analysis</subject><subject>Wineries &amp; vineyards</subject><subject>Wines</subject><issn>0362-028X</issn><issn>1944-9097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU9rGzEQxUVJqZ2kl36AIMilBLaRRtrN6pgusZsScCAJ6U3or6OwXjnSLjTfvjJ2e-jpwbwfj5l5CH2h5BtntL78ubivqKi4EB_QnArOK0HE1RGaE9ZARaD9NUPHOb8SQkBA8wnNGADQGsQcTUsX10ltX4JRPV6lsA4D7nqVc_BlNIY44Ohx9xIGlx1-3gn-rrKzuDidSrqIGixe_X5fuwE_jEr3Dt_mOMZtQXfWTe82bhhL_n2KPvQun6KPXvXZfT7oCXpa3Dx2P6q71fK2u76rDKvpWGnBPQfhubGghba63NUK62toPa11Y5zy1igF1jbtlTCatEApVwCGCdNSdoK-7nO3Kb5NLo9yE7Jxfa8GF6csgbUcCKcUCnr-H_oapzSU7STwpiG8Zg0v1MWeMinmnJyX2xQ2Kr1LSuSuDFnKkFTIUkaBzw6Rk944-w_9-332B2VLhOA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Su, Ying-Yue</creator><creator>Gao, Jie</creator><creator>Zhao, Yong-Fang</creator><creator>Wen, Hao-Song</creator><creator>Zhang, Jin-Jie</creator><creator>Zhang, Ang</creator><creator>Yuan, Chun-Long</creator><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>883</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0F</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8416-8235</orcidid><orcidid>https://orcid.org/0000-0002-0561-8286</orcidid><orcidid>https://orcid.org/0000-0002-1955-1430</orcidid></search><sort><creationdate>20200801</creationdate><title>Geographical Origin Classification of Chinese Wines Based on Carbon and Oxygen Stable Isotopes and Elemental Profiles</title><author>Su, Ying-Yue ; Gao, Jie ; Zhao, Yong-Fang ; Wen, Hao-Song ; Zhang, Jin-Jie ; Zhang, Ang ; Yuan, Chun-Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-b94f429f4cd2b9bdb90989df528f15b6ceafdcaa2dd6879cb082114a22c39c813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Carbon isotopes</topic><topic>Chemical elements</topic><topic>China</topic><topic>Chromatography</topic><topic>Classification</topic><topic>Consumption</topic><topic>Discriminant analysis</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Food safety</topic><topic>Geographical distribution</topic><topic>Geographical locations</topic><topic>Humans</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Isotope ratios</topic><topic>Isotopes</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Methods</topic><topic>Minerals</topic><topic>Mountains</topic><topic>Multivariate analysis</topic><topic>Oxygen</topic><topic>Oxygen isotopes</topic><topic>Oxygen Isotopes - analysis</topic><topic>Principal components analysis</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Stable isotopes</topic><topic>Trace Elements - analysis</topic><topic>Valleys</topic><topic>Wine - analysis</topic><topic>Wineries &amp; vineyards</topic><topic>Wines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Ying-Yue</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Zhao, Yong-Fang</creatorcontrib><creatorcontrib>Wen, Hao-Song</creatorcontrib><creatorcontrib>Zhang, Jin-Jie</creatorcontrib><creatorcontrib>Zhang, Ang</creatorcontrib><creatorcontrib>Yuan, Chun-Long</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Ying-Yue</au><au>Gao, Jie</au><au>Zhao, Yong-Fang</au><au>Wen, Hao-Song</au><au>Zhang, Jin-Jie</au><au>Zhang, Ang</au><au>Yuan, Chun-Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geographical Origin Classification of Chinese Wines Based on Carbon and Oxygen Stable Isotopes and Elemental Profiles</atitle><jtitle>Journal of food protection</jtitle><addtitle>J Food Prot</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>83</volume><issue>8</issue><spage>1323</spage><epage>1334</epage><pages>1323-1334</pages><issn>0362-028X</issn><eissn>1944-9097</eissn><abstract>Wines from different regions have different qualities due to the impact of geographical location and climate. The sale of inferior wines seriously violates the fair-trade rights of consumers. This article provides an elemental analysis classification method for verifying the geographical origin of wines in the People's Republic of China. Inductively coupled plasma mass spectrometry, liquid chromatography isotope ratio mass spectrometry, and an isotope ratio mass spectrometer were used to analyze 142 wine samples collected from Helan Mountain, Xinjiang, Yunchuanzang, the Yanhuai Valley, and the Hexi Corridor regions. The data included elemental profiles, carbon isotope ratios (δ13C), and oxygen isotope ratios (δ18O). The results of multivariate analysis revealed that the geographical origin of wine is closely related to variations in elemental profiles and isotope ratios. Introducing δ18O and the elements Li, Mn, Ag, In, Th, Ta, and Re into the discriminant model yielded correct classification rates of the linear discriminant model of 90.8% for the training set and 87.3% for the test set.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>32221529</pmid><doi>10.4315/JFP-19-499</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8416-8235</orcidid><orcidid>https://orcid.org/0000-0002-0561-8286</orcidid><orcidid>https://orcid.org/0000-0002-1955-1430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-028X
ispartof Journal of food protection, 2020-08, Vol.83 (8), p.1323-1334
issn 0362-028X
1944-9097
language eng
recordid cdi_proquest_miscellaneous_2384204112
source MEDLINE; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection
subjects Carbon
Carbon isotopes
Chemical elements
China
Chromatography
Classification
Consumption
Discriminant analysis
Ethanol
Fermentation
Food safety
Geographical distribution
Geographical locations
Humans
Inductively coupled plasma mass spectrometry
Isotope ratios
Isotopes
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Methods
Minerals
Mountains
Multivariate analysis
Oxygen
Oxygen isotopes
Oxygen Isotopes - analysis
Principal components analysis
Scientific imaging
Spectroscopy
Stable isotopes
Trace Elements - analysis
Valleys
Wine - analysis
Wineries & vineyards
Wines
title Geographical Origin Classification of Chinese Wines Based on Carbon and Oxygen Stable Isotopes and Elemental Profiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geographical%20Origin%20Classification%20of%20Chinese%20Wines%20Based%20on%20Carbon%20and%20Oxygen%20Stable%20Isotopes%20and%20Elemental%20Profiles&rft.jtitle=Journal%20of%20food%20protection&rft.au=Su,%20Ying-Yue&rft.date=2020-08-01&rft.volume=83&rft.issue=8&rft.spage=1323&rft.epage=1334&rft.pages=1323-1334&rft.issn=0362-028X&rft.eissn=1944-9097&rft_id=info:doi/10.4315/JFP-19-499&rft_dat=%3Cproquest_cross%3E2384204112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466045364&rft_id=info:pmid/32221529&rfr_iscdi=true