Polydiacetylene–Perylenediimide Supercapacitors
Organic supercapacitors have attracted interest as promising “green” and efficient components in energy storage applications. A polydiacetylene derivative coupled with reduced graphene oxide was employed, for the first time, to generate an organic pseudocapacitance‐based supercapacitor that exhibite...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2020-06, Vol.13 (12), p.3230-3236 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3236 |
---|---|
container_issue | 12 |
container_start_page | 3230 |
container_title | ChemSusChem |
container_volume | 13 |
creator | De Adhikari, Amrita Morag, Ahiud Seo, Joonsik Kim, Jong‐Man Jelinek, Raz |
description | Organic supercapacitors have attracted interest as promising “green” and efficient components in energy storage applications. A polydiacetylene derivative coupled with reduced graphene oxide was employed, for the first time, to generate an organic pseudocapacitance‐based supercapacitor that exhibited excellent electrochemical properties. Specifically, diacetylene monomers were functionalized with perylenediimide (PDI), spontaneously forming elongated microfibers. Following polymerization through UV irradiation, the PDI–polydiacetylene microfibers were interspersed with reduced graphene oxide (rGO), generating a porous electrode material exhibiting a high surface area and facilitating efficient ion diffusion, both essential preconditions for supercapacitor applications. We show that PDI–polydiacetylene has an important role in enhancing the electrochemical properties as a supercapacitor electrode. Besides stabilizing the microporous electrode organization, the delocalized π electrons in both the PDI residues and conjugated network of the polydiacetylene contributed to a significantly higher capacitance (specific capacitance >600 F g−1 at 1 A g−1 current density), longer discharge time, and high power density. The PDI–polydiacetylene‐rGO electrodes were employed in a functional supercapacitor device.
An organic supercapacitor with excellent electrochemical properties was prepared by combining a polydiacetylene–perylenediimide composite with reduced graphene oxide. The porous electrode material had a high surface area and facilitating efficient ion diffusion, both essential preconditions for supercapacitor applications. |
doi_str_mv | 10.1002/cssc.202000440 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2383525125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383525125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4760-660a57a3bc1c1ba45ba56066ac0ab5cf1f069a38a6924eaa664c3b3c27c5545d3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK1ePYrgxUvq7NckPUrwCwoWquBt2Ww2sCVp4m6D5OZ_8B_6S0xtreDF07yHZx5mXkJOKYwpALsyIZgxAwYAQsAeGdIERSRRvOzvMqcDchTCAgBhgnhIBpwxygTlQ0JnddnlThu76kq7tJ_vHzPrv2PuXOVyez5vG-uNbrRxq9qHY3JQ6DLYk-0ckefbm6f0Ppo-3j2k19PIiBghQgQtY80zQw3NtJCZlgiI2oDOpCloATjRPNE4YcJqjSgMz7hhsZFSyJyPyOXG2_j6tbVhpSoXjC1LvbR1GxTjCZdMUiZ79OIPuqhbv-yvU-svkxhZgj013lDG1yF4W6jGu0r7TlFQ6zLVuky1K7NfONtq26yy-Q7_aa8HJhvgzZW2-0en0vk8_ZV_AW-YgOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413876286</pqid></control><display><type>article</type><title>Polydiacetylene–Perylenediimide Supercapacitors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Adhikari, Amrita ; Morag, Ahiud ; Seo, Joonsik ; Kim, Jong‐Man ; Jelinek, Raz</creator><creatorcontrib>De Adhikari, Amrita ; Morag, Ahiud ; Seo, Joonsik ; Kim, Jong‐Man ; Jelinek, Raz</creatorcontrib><description>Organic supercapacitors have attracted interest as promising “green” and efficient components in energy storage applications. A polydiacetylene derivative coupled with reduced graphene oxide was employed, for the first time, to generate an organic pseudocapacitance‐based supercapacitor that exhibited excellent electrochemical properties. Specifically, diacetylene monomers were functionalized with perylenediimide (PDI), spontaneously forming elongated microfibers. Following polymerization through UV irradiation, the PDI–polydiacetylene microfibers were interspersed with reduced graphene oxide (rGO), generating a porous electrode material exhibiting a high surface area and facilitating efficient ion diffusion, both essential preconditions for supercapacitor applications. We show that PDI–polydiacetylene has an important role in enhancing the electrochemical properties as a supercapacitor electrode. Besides stabilizing the microporous electrode organization, the delocalized π electrons in both the PDI residues and conjugated network of the polydiacetylene contributed to a significantly higher capacitance (specific capacitance >600 F g−1 at 1 A g−1 current density), longer discharge time, and high power density. The PDI–polydiacetylene‐rGO electrodes were employed in a functional supercapacitor device.
An organic supercapacitor with excellent electrochemical properties was prepared by combining a polydiacetylene–perylenediimide composite with reduced graphene oxide. The porous electrode material had a high surface area and facilitating efficient ion diffusion, both essential preconditions for supercapacitor applications.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202000440</identifier><identifier>PMID: 32212413</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Capacitance ; Electrochemical analysis ; electrochemistry ; Electrode materials ; Electrodes ; Energy storage ; Graphene ; Ion diffusion ; Microfibers ; organic ; perylene diimide ; polydiacetylene ; Polydiacetylenes ; Porous materials ; supercapacitor ; Supercapacitors ; Ultraviolet radiation</subject><ispartof>ChemSusChem, 2020-06, Vol.13 (12), p.3230-3236</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4760-660a57a3bc1c1ba45ba56066ac0ab5cf1f069a38a6924eaa664c3b3c27c5545d3</citedby><cites>FETCH-LOGICAL-c4760-660a57a3bc1c1ba45ba56066ac0ab5cf1f069a38a6924eaa664c3b3c27c5545d3</cites><orcidid>0000-0002-0336-1384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202000440$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202000440$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32212413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Adhikari, Amrita</creatorcontrib><creatorcontrib>Morag, Ahiud</creatorcontrib><creatorcontrib>Seo, Joonsik</creatorcontrib><creatorcontrib>Kim, Jong‐Man</creatorcontrib><creatorcontrib>Jelinek, Raz</creatorcontrib><title>Polydiacetylene–Perylenediimide Supercapacitors</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Organic supercapacitors have attracted interest as promising “green” and efficient components in energy storage applications. A polydiacetylene derivative coupled with reduced graphene oxide was employed, for the first time, to generate an organic pseudocapacitance‐based supercapacitor that exhibited excellent electrochemical properties. Specifically, diacetylene monomers were functionalized with perylenediimide (PDI), spontaneously forming elongated microfibers. Following polymerization through UV irradiation, the PDI–polydiacetylene microfibers were interspersed with reduced graphene oxide (rGO), generating a porous electrode material exhibiting a high surface area and facilitating efficient ion diffusion, both essential preconditions for supercapacitor applications. We show that PDI–polydiacetylene has an important role in enhancing the electrochemical properties as a supercapacitor electrode. Besides stabilizing the microporous electrode organization, the delocalized π electrons in both the PDI residues and conjugated network of the polydiacetylene contributed to a significantly higher capacitance (specific capacitance >600 F g−1 at 1 A g−1 current density), longer discharge time, and high power density. The PDI–polydiacetylene‐rGO electrodes were employed in a functional supercapacitor device.
An organic supercapacitor with excellent electrochemical properties was prepared by combining a polydiacetylene–perylenediimide composite with reduced graphene oxide. The porous electrode material had a high surface area and facilitating efficient ion diffusion, both essential preconditions for supercapacitor applications.</description><subject>Capacitance</subject><subject>Electrochemical analysis</subject><subject>electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Ion diffusion</subject><subject>Microfibers</subject><subject>organic</subject><subject>perylene diimide</subject><subject>polydiacetylene</subject><subject>Polydiacetylenes</subject><subject>Porous materials</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><subject>Ultraviolet radiation</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRbK1ePYrgxUvq7NckPUrwCwoWquBt2Ww2sCVp4m6D5OZ_8B_6S0xtreDF07yHZx5mXkJOKYwpALsyIZgxAwYAQsAeGdIERSRRvOzvMqcDchTCAgBhgnhIBpwxygTlQ0JnddnlThu76kq7tJ_vHzPrv2PuXOVyez5vG-uNbrRxq9qHY3JQ6DLYk-0ckefbm6f0Ppo-3j2k19PIiBghQgQtY80zQw3NtJCZlgiI2oDOpCloATjRPNE4YcJqjSgMz7hhsZFSyJyPyOXG2_j6tbVhpSoXjC1LvbR1GxTjCZdMUiZ79OIPuqhbv-yvU-svkxhZgj013lDG1yF4W6jGu0r7TlFQ6zLVuky1K7NfONtq26yy-Q7_aa8HJhvgzZW2-0en0vk8_ZV_AW-YgOI</recordid><startdate>20200619</startdate><enddate>20200619</enddate><creator>De Adhikari, Amrita</creator><creator>Morag, Ahiud</creator><creator>Seo, Joonsik</creator><creator>Kim, Jong‐Man</creator><creator>Jelinek, Raz</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0336-1384</orcidid></search><sort><creationdate>20200619</creationdate><title>Polydiacetylene–Perylenediimide Supercapacitors</title><author>De Adhikari, Amrita ; Morag, Ahiud ; Seo, Joonsik ; Kim, Jong‐Man ; Jelinek, Raz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4760-660a57a3bc1c1ba45ba56066ac0ab5cf1f069a38a6924eaa664c3b3c27c5545d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Capacitance</topic><topic>Electrochemical analysis</topic><topic>electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Ion diffusion</topic><topic>Microfibers</topic><topic>organic</topic><topic>perylene diimide</topic><topic>polydiacetylene</topic><topic>Polydiacetylenes</topic><topic>Porous materials</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Adhikari, Amrita</creatorcontrib><creatorcontrib>Morag, Ahiud</creatorcontrib><creatorcontrib>Seo, Joonsik</creatorcontrib><creatorcontrib>Kim, Jong‐Man</creatorcontrib><creatorcontrib>Jelinek, Raz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Adhikari, Amrita</au><au>Morag, Ahiud</au><au>Seo, Joonsik</au><au>Kim, Jong‐Man</au><au>Jelinek, Raz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polydiacetylene–Perylenediimide Supercapacitors</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2020-06-19</date><risdate>2020</risdate><volume>13</volume><issue>12</issue><spage>3230</spage><epage>3236</epage><pages>3230-3236</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Organic supercapacitors have attracted interest as promising “green” and efficient components in energy storage applications. A polydiacetylene derivative coupled with reduced graphene oxide was employed, for the first time, to generate an organic pseudocapacitance‐based supercapacitor that exhibited excellent electrochemical properties. Specifically, diacetylene monomers were functionalized with perylenediimide (PDI), spontaneously forming elongated microfibers. Following polymerization through UV irradiation, the PDI–polydiacetylene microfibers were interspersed with reduced graphene oxide (rGO), generating a porous electrode material exhibiting a high surface area and facilitating efficient ion diffusion, both essential preconditions for supercapacitor applications. We show that PDI–polydiacetylene has an important role in enhancing the electrochemical properties as a supercapacitor electrode. Besides stabilizing the microporous electrode organization, the delocalized π electrons in both the PDI residues and conjugated network of the polydiacetylene contributed to a significantly higher capacitance (specific capacitance >600 F g−1 at 1 A g−1 current density), longer discharge time, and high power density. The PDI–polydiacetylene‐rGO electrodes were employed in a functional supercapacitor device.
An organic supercapacitor with excellent electrochemical properties was prepared by combining a polydiacetylene–perylenediimide composite with reduced graphene oxide. The porous electrode material had a high surface area and facilitating efficient ion diffusion, both essential preconditions for supercapacitor applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32212413</pmid><doi>10.1002/cssc.202000440</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0336-1384</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2020-06, Vol.13 (12), p.3230-3236 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_2383525125 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Capacitance Electrochemical analysis electrochemistry Electrode materials Electrodes Energy storage Graphene Ion diffusion Microfibers organic perylene diimide polydiacetylene Polydiacetylenes Porous materials supercapacitor Supercapacitors Ultraviolet radiation |
title | Polydiacetylene–Perylenediimide Supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polydiacetylene%E2%80%93Perylenediimide%20Supercapacitors&rft.jtitle=ChemSusChem&rft.au=De%20Adhikari,%20Amrita&rft.date=2020-06-19&rft.volume=13&rft.issue=12&rft.spage=3230&rft.epage=3236&rft.pages=3230-3236&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202000440&rft_dat=%3Cproquest_cross%3E2383525125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413876286&rft_id=info:pmid/32212413&rfr_iscdi=true |