Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy

Mitochondrion is one of the most important organelles and becomes a target in many cancer therapeutic strategies. Mitochondrial microenvironments in response to therapeutic methods are the key to understand therapeutic mechanisms. However, they are almost rarely studied. Herein, the mitochondrial mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-04, Vol.92 (8), p.6081-6087
Hauptverfasser: Yue, Jing, Shen, Yanting, Liang, Lijia, Cong, Lili, Xu, Weiqing, Shi, Wei, Liang, Chongyang, Xu, Shuping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6087
container_issue 8
container_start_page 6081
container_title Analytical chemistry (Washington)
container_volume 92
creator Yue, Jing
Shen, Yanting
Liang, Lijia
Cong, Lili
Xu, Weiqing
Shi, Wei
Liang, Chongyang
Xu, Shuping
description Mitochondrion is one of the most important organelles and becomes a target in many cancer therapeutic strategies. Mitochondrial microenvironments in response to therapeutic methods are the key to understand therapeutic mechanisms. However, they are almost rarely studied. Herein, the mitochondrial microenvironments, including mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) after different photodynamic therapy (PDT) dosages, were monitored by fluorescent imaging and compared among three cell lines (HepG2, MCF-7, and LO2). Furthermore, the fluctuations of intramitochondrial pHs were revealed via a plasmonic mitochondrion-targeting surface-enhanced Raman scattering (SERS) pH nanosensor. Results indicate that the MMP decreases gradually with the ROS generation and the cancerous cells exhibit less response to excess ROS relative to normal cells. On the other hand, the pH value in the mitochondria decreases initially and then increases when the amount of ROS increases. The LO2 cell is preliminarily evidenced to have a higher self-adjustment ability due to its better tolerance to differential intra/extracellular pHs. This study may provide a basis for an in-depth understanding of the mechanisms of the mitochondrial targeting-based PDT therapeutic processes. It is also helpful for more accurate and useful diagnosis according to intramitochondrial microenvironments and improvement on therapy efficiency of cancers.
doi_str_mv 10.1021/acs.analchem.0c00497
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2383518468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394263158</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-c8b3b60341b454626b4b4d975f5d515233d220377fd7f63503d3d7dbda3186b23</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWi9vIDLgxs3Uk8tk0qVIvYCiSHU7JJNMG5lJajJT6Nub0urChauQ8P1_zvkQOscwxkDwtazjWDrZ1gvTjaEGYJNyD41wQSDnQpB9NAIAmpMS4Agdx_gJgDFgfoiOKCEguIAR-ngzKyNb6-bZs-19vfBOByvbdKuDN25lg3edcX16mq58O_TWu2wW7HxugtGZWmevC997vXays3U2W5ggl-tTdNDINpqz3XmC3u-ms9uH_Onl_vH25imXtOR9XgtFFQfKsGIF44QrppielEVT6CJtQqlOk9KybHTZcFoA1VSXWmlJseCK0BN0te1dBv81mNhXnY21aVvpjB9iRaigBRaMi4Re_kE__RCSwA01YYRTXGwotqXS9jEG01TLYDsZ1hWGauO9St6rH-_VznuKXezKB9UZ_Rv6EZ0A2AKb-O_H_3Z-A36-kcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394263158</pqid></control><display><type>article</type><title>Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yue, Jing ; Shen, Yanting ; Liang, Lijia ; Cong, Lili ; Xu, Weiqing ; Shi, Wei ; Liang, Chongyang ; Xu, Shuping</creator><creatorcontrib>Yue, Jing ; Shen, Yanting ; Liang, Lijia ; Cong, Lili ; Xu, Weiqing ; Shi, Wei ; Liang, Chongyang ; Xu, Shuping</creatorcontrib><description>Mitochondrion is one of the most important organelles and becomes a target in many cancer therapeutic strategies. Mitochondrial microenvironments in response to therapeutic methods are the key to understand therapeutic mechanisms. However, they are almost rarely studied. Herein, the mitochondrial microenvironments, including mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) after different photodynamic therapy (PDT) dosages, were monitored by fluorescent imaging and compared among three cell lines (HepG2, MCF-7, and LO2). Furthermore, the fluctuations of intramitochondrial pHs were revealed via a plasmonic mitochondrion-targeting surface-enhanced Raman scattering (SERS) pH nanosensor. Results indicate that the MMP decreases gradually with the ROS generation and the cancerous cells exhibit less response to excess ROS relative to normal cells. On the other hand, the pH value in the mitochondria decreases initially and then increases when the amount of ROS increases. The LO2 cell is preliminarily evidenced to have a higher self-adjustment ability due to its better tolerance to differential intra/extracellular pHs. This study may provide a basis for an in-depth understanding of the mechanisms of the mitochondrial targeting-based PDT therapeutic processes. It is also helpful for more accurate and useful diagnosis according to intramitochondrial microenvironments and improvement on therapy efficiency of cancers.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c00497</identifier><identifier>PMID: 32208680</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Line, Tumor ; Chemistry ; Fluoroscopic imaging ; Humans ; Hydrogen-Ion Concentration ; Membrane potential ; Membrane Potential, Mitochondrial - drug effects ; Microenvironments ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Optical Imaging ; Organelles ; pH effects ; Photochemotherapy ; Photodynamic therapy ; Photosensitizing Agents - pharmacology ; Raman spectra ; Reactive oxygen species ; Reactive Oxygen Species - analysis ; Reactive Oxygen Species - metabolism</subject><ispartof>Analytical chemistry (Washington), 2020-04, Vol.92 (8), p.6081-6087</ispartof><rights>Copyright American Chemical Society Apr 21, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-c8b3b60341b454626b4b4d975f5d515233d220377fd7f63503d3d7dbda3186b23</citedby><cites>FETCH-LOGICAL-a376t-c8b3b60341b454626b4b4d975f5d515233d220377fd7f63503d3d7dbda3186b23</cites><orcidid>0000-0002-6216-6175 ; 0000-0002-1947-317X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c00497$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c00497$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32208680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Jing</creatorcontrib><creatorcontrib>Shen, Yanting</creatorcontrib><creatorcontrib>Liang, Lijia</creatorcontrib><creatorcontrib>Cong, Lili</creatorcontrib><creatorcontrib>Xu, Weiqing</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Liang, Chongyang</creatorcontrib><creatorcontrib>Xu, Shuping</creatorcontrib><title>Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Mitochondrion is one of the most important organelles and becomes a target in many cancer therapeutic strategies. Mitochondrial microenvironments in response to therapeutic methods are the key to understand therapeutic mechanisms. However, they are almost rarely studied. Herein, the mitochondrial microenvironments, including mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) after different photodynamic therapy (PDT) dosages, were monitored by fluorescent imaging and compared among three cell lines (HepG2, MCF-7, and LO2). Furthermore, the fluctuations of intramitochondrial pHs were revealed via a plasmonic mitochondrion-targeting surface-enhanced Raman scattering (SERS) pH nanosensor. Results indicate that the MMP decreases gradually with the ROS generation and the cancerous cells exhibit less response to excess ROS relative to normal cells. On the other hand, the pH value in the mitochondria decreases initially and then increases when the amount of ROS increases. The LO2 cell is preliminarily evidenced to have a higher self-adjustment ability due to its better tolerance to differential intra/extracellular pHs. This study may provide a basis for an in-depth understanding of the mechanisms of the mitochondrial targeting-based PDT therapeutic processes. It is also helpful for more accurate and useful diagnosis according to intramitochondrial microenvironments and improvement on therapy efficiency of cancers.</description><subject>Cell Line, Tumor</subject><subject>Chemistry</subject><subject>Fluoroscopic imaging</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Microenvironments</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Optical Imaging</subject><subject>Organelles</subject><subject>pH effects</subject><subject>Photochemotherapy</subject><subject>Photodynamic therapy</subject><subject>Photosensitizing Agents - pharmacology</subject><subject>Raman spectra</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - analysis</subject><subject>Reactive Oxygen Species - metabolism</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKAzEUhoMoWi9vIDLgxs3Uk8tk0qVIvYCiSHU7JJNMG5lJajJT6Nub0urChauQ8P1_zvkQOscwxkDwtazjWDrZ1gvTjaEGYJNyD41wQSDnQpB9NAIAmpMS4Agdx_gJgDFgfoiOKCEguIAR-ngzKyNb6-bZs-19vfBOByvbdKuDN25lg3edcX16mq58O_TWu2wW7HxugtGZWmevC997vXays3U2W5ggl-tTdNDINpqz3XmC3u-ms9uH_Onl_vH25imXtOR9XgtFFQfKsGIF44QrppielEVT6CJtQqlOk9KybHTZcFoA1VSXWmlJseCK0BN0te1dBv81mNhXnY21aVvpjB9iRaigBRaMi4Re_kE__RCSwA01YYRTXGwotqXS9jEG01TLYDsZ1hWGauO9St6rH-_VznuKXezKB9UZ_Rv6EZ0A2AKb-O_H_3Z-A36-kcc</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>Yue, Jing</creator><creator>Shen, Yanting</creator><creator>Liang, Lijia</creator><creator>Cong, Lili</creator><creator>Xu, Weiqing</creator><creator>Shi, Wei</creator><creator>Liang, Chongyang</creator><creator>Xu, Shuping</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6216-6175</orcidid><orcidid>https://orcid.org/0000-0002-1947-317X</orcidid></search><sort><creationdate>20200421</creationdate><title>Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy</title><author>Yue, Jing ; Shen, Yanting ; Liang, Lijia ; Cong, Lili ; Xu, Weiqing ; Shi, Wei ; Liang, Chongyang ; Xu, Shuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-c8b3b60341b454626b4b4d975f5d515233d220377fd7f63503d3d7dbda3186b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell Line, Tumor</topic><topic>Chemistry</topic><topic>Fluoroscopic imaging</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Microenvironments</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Optical Imaging</topic><topic>Organelles</topic><topic>pH effects</topic><topic>Photochemotherapy</topic><topic>Photodynamic therapy</topic><topic>Photosensitizing Agents - pharmacology</topic><topic>Raman spectra</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - analysis</topic><topic>Reactive Oxygen Species - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Jing</creatorcontrib><creatorcontrib>Shen, Yanting</creatorcontrib><creatorcontrib>Liang, Lijia</creatorcontrib><creatorcontrib>Cong, Lili</creatorcontrib><creatorcontrib>Xu, Weiqing</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Liang, Chongyang</creatorcontrib><creatorcontrib>Xu, Shuping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Jing</au><au>Shen, Yanting</au><au>Liang, Lijia</au><au>Cong, Lili</au><au>Xu, Weiqing</au><au>Shi, Wei</au><au>Liang, Chongyang</au><au>Xu, Shuping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-04-21</date><risdate>2020</risdate><volume>92</volume><issue>8</issue><spage>6081</spage><epage>6087</epage><pages>6081-6087</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Mitochondrion is one of the most important organelles and becomes a target in many cancer therapeutic strategies. Mitochondrial microenvironments in response to therapeutic methods are the key to understand therapeutic mechanisms. However, they are almost rarely studied. Herein, the mitochondrial microenvironments, including mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) after different photodynamic therapy (PDT) dosages, were monitored by fluorescent imaging and compared among three cell lines (HepG2, MCF-7, and LO2). Furthermore, the fluctuations of intramitochondrial pHs were revealed via a plasmonic mitochondrion-targeting surface-enhanced Raman scattering (SERS) pH nanosensor. Results indicate that the MMP decreases gradually with the ROS generation and the cancerous cells exhibit less response to excess ROS relative to normal cells. On the other hand, the pH value in the mitochondria decreases initially and then increases when the amount of ROS increases. The LO2 cell is preliminarily evidenced to have a higher self-adjustment ability due to its better tolerance to differential intra/extracellular pHs. This study may provide a basis for an in-depth understanding of the mechanisms of the mitochondrial targeting-based PDT therapeutic processes. It is also helpful for more accurate and useful diagnosis according to intramitochondrial microenvironments and improvement on therapy efficiency of cancers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32208680</pmid><doi>10.1021/acs.analchem.0c00497</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6216-6175</orcidid><orcidid>https://orcid.org/0000-0002-1947-317X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-04, Vol.92 (8), p.6081-6087
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2383518468
source MEDLINE; American Chemical Society Journals
subjects Cell Line, Tumor
Chemistry
Fluoroscopic imaging
Humans
Hydrogen-Ion Concentration
Membrane potential
Membrane Potential, Mitochondrial - drug effects
Microenvironments
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Optical Imaging
Organelles
pH effects
Photochemotherapy
Photodynamic therapy
Photosensitizing Agents - pharmacology
Raman spectra
Reactive oxygen species
Reactive Oxygen Species - analysis
Reactive Oxygen Species - metabolism
title Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20Mitochondrial%20Microenvironmental%20Evolution%20Triggered%20by%20Photodynamic%20Therapy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yue,%20Jing&rft.date=2020-04-21&rft.volume=92&rft.issue=8&rft.spage=6081&rft.epage=6087&rft.pages=6081-6087&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c00497&rft_dat=%3Cproquest_cross%3E2394263158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394263158&rft_id=info:pmid/32208680&rfr_iscdi=true