Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy
Mitochondrion is one of the most important organelles and becomes a target in many cancer therapeutic strategies. Mitochondrial microenvironments in response to therapeutic methods are the key to understand therapeutic mechanisms. However, they are almost rarely studied. Herein, the mitochondrial mi...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-04, Vol.92 (8), p.6081-6087 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6087 |
---|---|
container_issue | 8 |
container_start_page | 6081 |
container_title | Analytical chemistry (Washington) |
container_volume | 92 |
creator | Yue, Jing Shen, Yanting Liang, Lijia Cong, Lili Xu, Weiqing Shi, Wei Liang, Chongyang Xu, Shuping |
description | Mitochondrion is one of the most important organelles and becomes a target in many cancer therapeutic strategies. Mitochondrial microenvironments in response to therapeutic methods are the key to understand therapeutic mechanisms. However, they are almost rarely studied. Herein, the mitochondrial microenvironments, including mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) after different photodynamic therapy (PDT) dosages, were monitored by fluorescent imaging and compared among three cell lines (HepG2, MCF-7, and LO2). Furthermore, the fluctuations of intramitochondrial pHs were revealed via a plasmonic mitochondrion-targeting surface-enhanced Raman scattering (SERS) pH nanosensor. Results indicate that the MMP decreases gradually with the ROS generation and the cancerous cells exhibit less response to excess ROS relative to normal cells. On the other hand, the pH value in the mitochondria decreases initially and then increases when the amount of ROS increases. The LO2 cell is preliminarily evidenced to have a higher self-adjustment ability due to its better tolerance to differential intra/extracellular pHs. This study may provide a basis for an in-depth understanding of the mechanisms of the mitochondrial targeting-based PDT therapeutic processes. It is also helpful for more accurate and useful diagnosis according to intramitochondrial microenvironments and improvement on therapy efficiency of cancers. |
doi_str_mv | 10.1021/acs.analchem.0c00497 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2383518468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394263158</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-c8b3b60341b454626b4b4d975f5d515233d220377fd7f63503d3d7dbda3186b23</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWi9vIDLgxs3Uk8tk0qVIvYCiSHU7JJNMG5lJajJT6Nub0urChauQ8P1_zvkQOscwxkDwtazjWDrZ1gvTjaEGYJNyD41wQSDnQpB9NAIAmpMS4Agdx_gJgDFgfoiOKCEguIAR-ngzKyNb6-bZs-19vfBOByvbdKuDN25lg3edcX16mq58O_TWu2wW7HxugtGZWmevC997vXays3U2W5ggl-tTdNDINpqz3XmC3u-ms9uH_Onl_vH25imXtOR9XgtFFQfKsGIF44QrppielEVT6CJtQqlOk9KybHTZcFoA1VSXWmlJseCK0BN0te1dBv81mNhXnY21aVvpjB9iRaigBRaMi4Re_kE__RCSwA01YYRTXGwotqXS9jEG01TLYDsZ1hWGauO9St6rH-_VznuKXezKB9UZ_Rv6EZ0A2AKb-O_H_3Z-A36-kcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394263158</pqid></control><display><type>article</type><title>Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yue, Jing ; Shen, Yanting ; Liang, Lijia ; Cong, Lili ; Xu, Weiqing ; Shi, Wei ; Liang, Chongyang ; Xu, Shuping</creator><creatorcontrib>Yue, Jing ; Shen, Yanting ; Liang, Lijia ; Cong, Lili ; Xu, Weiqing ; Shi, Wei ; Liang, Chongyang ; Xu, Shuping</creatorcontrib><description>Mitochondrion is one of the most important organelles and becomes a target in many cancer therapeutic strategies. Mitochondrial microenvironments in response to therapeutic methods are the key to understand therapeutic mechanisms. However, they are almost rarely studied. Herein, the mitochondrial microenvironments, including mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) after different photodynamic therapy (PDT) dosages, were monitored by fluorescent imaging and compared among three cell lines (HepG2, MCF-7, and LO2). Furthermore, the fluctuations of intramitochondrial pHs were revealed via a plasmonic mitochondrion-targeting surface-enhanced Raman scattering (SERS) pH nanosensor. Results indicate that the MMP decreases gradually with the ROS generation and the cancerous cells exhibit less response to excess ROS relative to normal cells. On the other hand, the pH value in the mitochondria decreases initially and then increases when the amount of ROS increases. The LO2 cell is preliminarily evidenced to have a higher self-adjustment ability due to its better tolerance to differential intra/extracellular pHs. This study may provide a basis for an in-depth understanding of the mechanisms of the mitochondrial targeting-based PDT therapeutic processes. It is also helpful for more accurate and useful diagnosis according to intramitochondrial microenvironments and improvement on therapy efficiency of cancers.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c00497</identifier><identifier>PMID: 32208680</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Line, Tumor ; Chemistry ; Fluoroscopic imaging ; Humans ; Hydrogen-Ion Concentration ; Membrane potential ; Membrane Potential, Mitochondrial - drug effects ; Microenvironments ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Optical Imaging ; Organelles ; pH effects ; Photochemotherapy ; Photodynamic therapy ; Photosensitizing Agents - pharmacology ; Raman spectra ; Reactive oxygen species ; Reactive Oxygen Species - analysis ; Reactive Oxygen Species - metabolism</subject><ispartof>Analytical chemistry (Washington), 2020-04, Vol.92 (8), p.6081-6087</ispartof><rights>Copyright American Chemical Society Apr 21, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-c8b3b60341b454626b4b4d975f5d515233d220377fd7f63503d3d7dbda3186b23</citedby><cites>FETCH-LOGICAL-a376t-c8b3b60341b454626b4b4d975f5d515233d220377fd7f63503d3d7dbda3186b23</cites><orcidid>0000-0002-6216-6175 ; 0000-0002-1947-317X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c00497$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c00497$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32208680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Jing</creatorcontrib><creatorcontrib>Shen, Yanting</creatorcontrib><creatorcontrib>Liang, Lijia</creatorcontrib><creatorcontrib>Cong, Lili</creatorcontrib><creatorcontrib>Xu, Weiqing</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Liang, Chongyang</creatorcontrib><creatorcontrib>Xu, Shuping</creatorcontrib><title>Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Mitochondrion is one of the most important organelles and becomes a target in many cancer therapeutic strategies. Mitochondrial microenvironments in response to therapeutic methods are the key to understand therapeutic mechanisms. However, they are almost rarely studied. Herein, the mitochondrial microenvironments, including mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) after different photodynamic therapy (PDT) dosages, were monitored by fluorescent imaging and compared among three cell lines (HepG2, MCF-7, and LO2). Furthermore, the fluctuations of intramitochondrial pHs were revealed via a plasmonic mitochondrion-targeting surface-enhanced Raman scattering (SERS) pH nanosensor. Results indicate that the MMP decreases gradually with the ROS generation and the cancerous cells exhibit less response to excess ROS relative to normal cells. On the other hand, the pH value in the mitochondria decreases initially and then increases when the amount of ROS increases. The LO2 cell is preliminarily evidenced to have a higher self-adjustment ability due to its better tolerance to differential intra/extracellular pHs. This study may provide a basis for an in-depth understanding of the mechanisms of the mitochondrial targeting-based PDT therapeutic processes. It is also helpful for more accurate and useful diagnosis according to intramitochondrial microenvironments and improvement on therapy efficiency of cancers.</description><subject>Cell Line, Tumor</subject><subject>Chemistry</subject><subject>Fluoroscopic imaging</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Microenvironments</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Optical Imaging</subject><subject>Organelles</subject><subject>pH effects</subject><subject>Photochemotherapy</subject><subject>Photodynamic therapy</subject><subject>Photosensitizing Agents - pharmacology</subject><subject>Raman spectra</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - analysis</subject><subject>Reactive Oxygen Species - metabolism</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKAzEUhoMoWi9vIDLgxs3Uk8tk0qVIvYCiSHU7JJNMG5lJajJT6Nub0urChauQ8P1_zvkQOscwxkDwtazjWDrZ1gvTjaEGYJNyD41wQSDnQpB9NAIAmpMS4Agdx_gJgDFgfoiOKCEguIAR-ngzKyNb6-bZs-19vfBOByvbdKuDN25lg3edcX16mq58O_TWu2wW7HxugtGZWmevC997vXays3U2W5ggl-tTdNDINpqz3XmC3u-ms9uH_Onl_vH25imXtOR9XgtFFQfKsGIF44QrppielEVT6CJtQqlOk9KybHTZcFoA1VSXWmlJseCK0BN0te1dBv81mNhXnY21aVvpjB9iRaigBRaMi4Re_kE__RCSwA01YYRTXGwotqXS9jEG01TLYDsZ1hWGauO9St6rH-_VznuKXezKB9UZ_Rv6EZ0A2AKb-O_H_3Z-A36-kcc</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>Yue, Jing</creator><creator>Shen, Yanting</creator><creator>Liang, Lijia</creator><creator>Cong, Lili</creator><creator>Xu, Weiqing</creator><creator>Shi, Wei</creator><creator>Liang, Chongyang</creator><creator>Xu, Shuping</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6216-6175</orcidid><orcidid>https://orcid.org/0000-0002-1947-317X</orcidid></search><sort><creationdate>20200421</creationdate><title>Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy</title><author>Yue, Jing ; Shen, Yanting ; Liang, Lijia ; Cong, Lili ; Xu, Weiqing ; Shi, Wei ; Liang, Chongyang ; Xu, Shuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-c8b3b60341b454626b4b4d975f5d515233d220377fd7f63503d3d7dbda3186b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell Line, Tumor</topic><topic>Chemistry</topic><topic>Fluoroscopic imaging</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Microenvironments</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Optical Imaging</topic><topic>Organelles</topic><topic>pH effects</topic><topic>Photochemotherapy</topic><topic>Photodynamic therapy</topic><topic>Photosensitizing Agents - pharmacology</topic><topic>Raman spectra</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - analysis</topic><topic>Reactive Oxygen Species - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Jing</creatorcontrib><creatorcontrib>Shen, Yanting</creatorcontrib><creatorcontrib>Liang, Lijia</creatorcontrib><creatorcontrib>Cong, Lili</creatorcontrib><creatorcontrib>Xu, Weiqing</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Liang, Chongyang</creatorcontrib><creatorcontrib>Xu, Shuping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Jing</au><au>Shen, Yanting</au><au>Liang, Lijia</au><au>Cong, Lili</au><au>Xu, Weiqing</au><au>Shi, Wei</au><au>Liang, Chongyang</au><au>Xu, Shuping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-04-21</date><risdate>2020</risdate><volume>92</volume><issue>8</issue><spage>6081</spage><epage>6087</epage><pages>6081-6087</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Mitochondrion is one of the most important organelles and becomes a target in many cancer therapeutic strategies. Mitochondrial microenvironments in response to therapeutic methods are the key to understand therapeutic mechanisms. However, they are almost rarely studied. Herein, the mitochondrial microenvironments, including mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) after different photodynamic therapy (PDT) dosages, were monitored by fluorescent imaging and compared among three cell lines (HepG2, MCF-7, and LO2). Furthermore, the fluctuations of intramitochondrial pHs were revealed via a plasmonic mitochondrion-targeting surface-enhanced Raman scattering (SERS) pH nanosensor. Results indicate that the MMP decreases gradually with the ROS generation and the cancerous cells exhibit less response to excess ROS relative to normal cells. On the other hand, the pH value in the mitochondria decreases initially and then increases when the amount of ROS increases. The LO2 cell is preliminarily evidenced to have a higher self-adjustment ability due to its better tolerance to differential intra/extracellular pHs. This study may provide a basis for an in-depth understanding of the mechanisms of the mitochondrial targeting-based PDT therapeutic processes. It is also helpful for more accurate and useful diagnosis according to intramitochondrial microenvironments and improvement on therapy efficiency of cancers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32208680</pmid><doi>10.1021/acs.analchem.0c00497</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6216-6175</orcidid><orcidid>https://orcid.org/0000-0002-1947-317X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2020-04, Vol.92 (8), p.6081-6087 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2383518468 |
source | MEDLINE; American Chemical Society Journals |
subjects | Cell Line, Tumor Chemistry Fluoroscopic imaging Humans Hydrogen-Ion Concentration Membrane potential Membrane Potential, Mitochondrial - drug effects Microenvironments Mitochondria Mitochondria - drug effects Mitochondria - metabolism Optical Imaging Organelles pH effects Photochemotherapy Photodynamic therapy Photosensitizing Agents - pharmacology Raman spectra Reactive oxygen species Reactive Oxygen Species - analysis Reactive Oxygen Species - metabolism |
title | Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20Mitochondrial%20Microenvironmental%20Evolution%20Triggered%20by%20Photodynamic%20Therapy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yue,%20Jing&rft.date=2020-04-21&rft.volume=92&rft.issue=8&rft.spage=6081&rft.epage=6087&rft.pages=6081-6087&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c00497&rft_dat=%3Cproquest_cross%3E2394263158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394263158&rft_id=info:pmid/32208680&rfr_iscdi=true |