Automated single cardiomyocyte characterization by nucleus extraction from dynamic holographic images using a fully convolutional neural network

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) beating can be efficiently characterized by time-lapse quantitative phase imaging (QPIs) obtained by digital holographic microscopy. Particularly, the CM's nucleus section can precisely reflect the associated rhythmic beating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2020-03, Vol.11 (3), p.1501-1516
Hauptverfasser: Ahmadzadeh, Ezat, Jaferzadeh, Keyvan, Shin, Seokjoo, Moon, Inkyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1516
container_issue 3
container_start_page 1501
container_title Biomedical optics express
container_volume 11
creator Ahmadzadeh, Ezat
Jaferzadeh, Keyvan
Shin, Seokjoo
Moon, Inkyu
description Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) beating can be efficiently characterized by time-lapse quantitative phase imaging (QPIs) obtained by digital holographic microscopy. Particularly, the CM's nucleus section can precisely reflect the associated rhythmic beating pattern of the CM suitable for subsequent beating pattern characterization. In this paper, we describe an automated method to characterize single CMs by nucleus extraction from QPIs and subsequent beating pattern reconstruction and quantification. However, accurate CM's nucleus extraction from the QPIs is a challenging task due to the variations in shape, size, orientation, and lack of special geometry. To this end, we propose a novel fully convolutional neural network (FCN)-based network architecture for accurate CM's nucleus extraction using pixel classification technique and subsequent beating pattern characterization. Our experimental results show that the beating profile of multiple extracted single CMs is less noisy and more informative compared to the whole image slide. Applying this method allows CM characterization at the single-cell level. Consequently, several single CMs are extracted from the whole slide QPIs and multiple parameters regarding their beating profile of each isolated CM are efficiently measured.
doi_str_mv 10.1364/BOE.385218
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2382658734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382658734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-617d86810fbbc3d9967b034c2f0fb0f430c83ac631849453a1eaecfa2c7e7ae23</originalsourceid><addsrcrecordid>eNpVUcluFDEQtRARiZJc-ADkI0Ka4K1tzwUpRIFEipRLOFtut3vG4LYHLwnNV_DJuJkQJXWp7dWrKj0A3mJ0hilnHz_fXp5R2REsX4Ejgju-Ekh2r5_Fh-A05--oGWMCUfkGHFJCEGekOwJ_zmuJky52gNmFjbfQ6DS4OM3RzKVlW520KTa537q4GGA_w1CNtzVD-6ssvaU6pjjBYQ56cgZuo4-bpHfbFrtJb2yGdSGHGo7V-xmaGO6jr8uk9jDYmv658hDTjxNwMGqf7emjPwbfvlzeXVytbm6_Xl-c36wMFbKsOBaD5BKjse8NHdZrLnpEmSFjq6CRUWQk1YZTLNmadVRjq60ZNTHCCm0JPQaf9ry72k92MDa0Z7zapXZxmlXUTr3sBLdVm3ivBBIdx7gRvH8kSPFntbmoyWVjvdfBxpoVoZLwTgrKGvTDHmpSzDnZ8WkNRmpRUTUV1V7FBn73_LAn6H_N6F9XZp1y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382658734</pqid></control><display><type>article</type><title>Automated single cardiomyocyte characterization by nucleus extraction from dynamic holographic images using a fully convolutional neural network</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Ahmadzadeh, Ezat ; Jaferzadeh, Keyvan ; Shin, Seokjoo ; Moon, Inkyu</creator><creatorcontrib>Ahmadzadeh, Ezat ; Jaferzadeh, Keyvan ; Shin, Seokjoo ; Moon, Inkyu</creatorcontrib><description>Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) beating can be efficiently characterized by time-lapse quantitative phase imaging (QPIs) obtained by digital holographic microscopy. Particularly, the CM's nucleus section can precisely reflect the associated rhythmic beating pattern of the CM suitable for subsequent beating pattern characterization. In this paper, we describe an automated method to characterize single CMs by nucleus extraction from QPIs and subsequent beating pattern reconstruction and quantification. However, accurate CM's nucleus extraction from the QPIs is a challenging task due to the variations in shape, size, orientation, and lack of special geometry. To this end, we propose a novel fully convolutional neural network (FCN)-based network architecture for accurate CM's nucleus extraction using pixel classification technique and subsequent beating pattern characterization. Our experimental results show that the beating profile of multiple extracted single CMs is less noisy and more informative compared to the whole image slide. Applying this method allows CM characterization at the single-cell level. Consequently, several single CMs are extracted from the whole slide QPIs and multiple parameters regarding their beating profile of each isolated CM are efficiently measured.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.385218</identifier><identifier>PMID: 32206425</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><ispartof>Biomedical optics express, 2020-03, Vol.11 (3), p.1501-1516</ispartof><rights>2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.</rights><rights>2020 Optical Society of America under the terms of the 2020 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-617d86810fbbc3d9967b034c2f0fb0f430c83ac631849453a1eaecfa2c7e7ae23</citedby><cites>FETCH-LOGICAL-c378t-617d86810fbbc3d9967b034c2f0fb0f430c83ac631849453a1eaecfa2c7e7ae23</cites><orcidid>0000-0003-0882-8585 ; 0000-0003-2844-3236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075611/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075611/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32206425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmadzadeh, Ezat</creatorcontrib><creatorcontrib>Jaferzadeh, Keyvan</creatorcontrib><creatorcontrib>Shin, Seokjoo</creatorcontrib><creatorcontrib>Moon, Inkyu</creatorcontrib><title>Automated single cardiomyocyte characterization by nucleus extraction from dynamic holographic images using a fully convolutional neural network</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) beating can be efficiently characterized by time-lapse quantitative phase imaging (QPIs) obtained by digital holographic microscopy. Particularly, the CM's nucleus section can precisely reflect the associated rhythmic beating pattern of the CM suitable for subsequent beating pattern characterization. In this paper, we describe an automated method to characterize single CMs by nucleus extraction from QPIs and subsequent beating pattern reconstruction and quantification. However, accurate CM's nucleus extraction from the QPIs is a challenging task due to the variations in shape, size, orientation, and lack of special geometry. To this end, we propose a novel fully convolutional neural network (FCN)-based network architecture for accurate CM's nucleus extraction using pixel classification technique and subsequent beating pattern characterization. Our experimental results show that the beating profile of multiple extracted single CMs is less noisy and more informative compared to the whole image slide. Applying this method allows CM characterization at the single-cell level. Consequently, several single CMs are extracted from the whole slide QPIs and multiple parameters regarding their beating profile of each isolated CM are efficiently measured.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUcluFDEQtRARiZJc-ADkI0Ka4K1tzwUpRIFEipRLOFtut3vG4LYHLwnNV_DJuJkQJXWp7dWrKj0A3mJ0hilnHz_fXp5R2REsX4Ejgju-Ekh2r5_Fh-A05--oGWMCUfkGHFJCEGekOwJ_zmuJky52gNmFjbfQ6DS4OM3RzKVlW520KTa537q4GGA_w1CNtzVD-6ssvaU6pjjBYQ56cgZuo4-bpHfbFrtJb2yGdSGHGo7V-xmaGO6jr8uk9jDYmv658hDTjxNwMGqf7emjPwbfvlzeXVytbm6_Xl-c36wMFbKsOBaD5BKjse8NHdZrLnpEmSFjq6CRUWQk1YZTLNmadVRjq60ZNTHCCm0JPQaf9ry72k92MDa0Z7zapXZxmlXUTr3sBLdVm3ivBBIdx7gRvH8kSPFntbmoyWVjvdfBxpoVoZLwTgrKGvTDHmpSzDnZ8WkNRmpRUTUV1V7FBn73_LAn6H_N6F9XZp1y</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ahmadzadeh, Ezat</creator><creator>Jaferzadeh, Keyvan</creator><creator>Shin, Seokjoo</creator><creator>Moon, Inkyu</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0882-8585</orcidid><orcidid>https://orcid.org/0000-0003-2844-3236</orcidid></search><sort><creationdate>20200301</creationdate><title>Automated single cardiomyocyte characterization by nucleus extraction from dynamic holographic images using a fully convolutional neural network</title><author>Ahmadzadeh, Ezat ; Jaferzadeh, Keyvan ; Shin, Seokjoo ; Moon, Inkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-617d86810fbbc3d9967b034c2f0fb0f430c83ac631849453a1eaecfa2c7e7ae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadzadeh, Ezat</creatorcontrib><creatorcontrib>Jaferzadeh, Keyvan</creatorcontrib><creatorcontrib>Shin, Seokjoo</creatorcontrib><creatorcontrib>Moon, Inkyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadzadeh, Ezat</au><au>Jaferzadeh, Keyvan</au><au>Shin, Seokjoo</au><au>Moon, Inkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated single cardiomyocyte characterization by nucleus extraction from dynamic holographic images using a fully convolutional neural network</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>11</volume><issue>3</issue><spage>1501</spage><epage>1516</epage><pages>1501-1516</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) beating can be efficiently characterized by time-lapse quantitative phase imaging (QPIs) obtained by digital holographic microscopy. Particularly, the CM's nucleus section can precisely reflect the associated rhythmic beating pattern of the CM suitable for subsequent beating pattern characterization. In this paper, we describe an automated method to characterize single CMs by nucleus extraction from QPIs and subsequent beating pattern reconstruction and quantification. However, accurate CM's nucleus extraction from the QPIs is a challenging task due to the variations in shape, size, orientation, and lack of special geometry. To this end, we propose a novel fully convolutional neural network (FCN)-based network architecture for accurate CM's nucleus extraction using pixel classification technique and subsequent beating pattern characterization. Our experimental results show that the beating profile of multiple extracted single CMs is less noisy and more informative compared to the whole image slide. Applying this method allows CM characterization at the single-cell level. Consequently, several single CMs are extracted from the whole slide QPIs and multiple parameters regarding their beating profile of each isolated CM are efficiently measured.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>32206425</pmid><doi>10.1364/BOE.385218</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0882-8585</orcidid><orcidid>https://orcid.org/0000-0003-2844-3236</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-7085
ispartof Biomedical optics express, 2020-03, Vol.11 (3), p.1501-1516
issn 2156-7085
2156-7085
language eng
recordid cdi_proquest_miscellaneous_2382658734
source DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library
title Automated single cardiomyocyte characterization by nucleus extraction from dynamic holographic images using a fully convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20single%20cardiomyocyte%20characterization%20by%20nucleus%20extraction%20from%20dynamic%20holographic%20images%20using%20a%20fully%20convolutional%20neural%20network&rft.jtitle=Biomedical%20optics%20express&rft.au=Ahmadzadeh,%20Ezat&rft.date=2020-03-01&rft.volume=11&rft.issue=3&rft.spage=1501&rft.epage=1516&rft.pages=1501-1516&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.385218&rft_dat=%3Cproquest_pubme%3E2382658734%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382658734&rft_id=info:pmid/32206425&rfr_iscdi=true