Electrochemical Phase Evolution of Metal‐Based Pre‐Catalysts for High‐Rate Polysulfide Conversion
In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial....
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-06, Vol.59 (23), p.9011-9017 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9017 |
---|---|
container_issue | 23 |
container_start_page | 9011 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Zhao, Meng Peng, Hong‐Jie Li, Bo‐Quan Chen, Xiao Xie, Jin Liu, Xinyan Zhang, Qiang Huang, Jia‐Qi |
description | In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) in working Li‐S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single‐crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all‐phase polysulfide‐involving reactions. Consequently, Co4N enables stable operation of high‐rate (10 C, 16.7 mA cm−2) and electrolyte‐starved (4.7 μL mgS−1) Li‐S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low‐valence metal compounds.
The electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) to polycrystalline CoSx that are rich in active sites in working Li‐S batteries is revealed. This transformation propels all‐phase polysulfide‐involving reactions and enables stable operation of high‐rate and electrolyte‐starved Li‐S batteries. |
doi_str_mv | 10.1002/anie.202003136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2382656581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382656581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-70ec36bb2482358fbefb98553dcc1867c6f34cc388afcc2750202d1d3b544bd13</originalsourceid><addsrcrecordid>eNqFkU9vFCEYh4mxsX_06tGQeOlltsA7MOyxbta2SdWN0TNhmJfuNOxQYaZmb_0I_Yx-EtlsrYkXT7z58fAE-BHylrMZZ0yc2aHHmWCCMeCgXpAjLgWvoGngZZlrgKrRkh-S45xvC681U6_IIQjBQAE_IjfLgG5M0a1x0zsb6GptM9LlfQzT2MeBRk8_4WjDr4fHD2Wno6uEZV7Ykm3zmKmPiV72N-sSfrUj0lUs-RR83yFdxOEeUy6e1-TA25DxzdN6Qr5_XH5bXFbXXy6uFufXlas5U1XD0IFqW1FrAVL7Fn0711JC5xzXqnHKQ-0caG29c6KR5eWi4x20sq7bjsMJOd1771L8MWEezabPDkOwA8YpGwFaKKmk3qHv_0Fv45SGcjsjaqZEw-ZCF2q2p1yKOSf05i71G5u2hjOzq8DsKjDPFZQD7560U7vB7hn_8-cFmO-Bn33A7X905vzz1fKv_DfQ0pVa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406270928</pqid></control><display><type>article</type><title>Electrochemical Phase Evolution of Metal‐Based Pre‐Catalysts for High‐Rate Polysulfide Conversion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Meng ; Peng, Hong‐Jie ; Li, Bo‐Quan ; Chen, Xiao ; Xie, Jin ; Liu, Xinyan ; Zhang, Qiang ; Huang, Jia‐Qi</creator><creatorcontrib>Zhao, Meng ; Peng, Hong‐Jie ; Li, Bo‐Quan ; Chen, Xiao ; Xie, Jin ; Liu, Xinyan ; Zhang, Qiang ; Huang, Jia‐Qi</creatorcontrib><description>In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) in working Li‐S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single‐crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all‐phase polysulfide‐involving reactions. Consequently, Co4N enables stable operation of high‐rate (10 C, 16.7 mA cm−2) and electrolyte‐starved (4.7 μL mgS−1) Li‐S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low‐valence metal compounds.
The electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) to polycrystalline CoSx that are rich in active sites in working Li‐S batteries is revealed. This transformation propels all‐phase polysulfide‐involving reactions and enables stable operation of high‐rate and electrolyte‐starved Li‐S batteries.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202003136</identifier><identifier>PMID: 32203631</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Electrocatalysts ; electrochemical phase evolution ; Electrochemistry ; Evolution ; Lithium ; Lithium sulfur batteries ; Metal compounds ; Phase transitions ; polysulfide conversion ; Polysulfides ; Reaction kinetics ; Sulfur ; Sulfurization</subject><ispartof>Angewandte Chemie International Edition, 2020-06, Vol.59 (23), p.9011-9017</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-70ec36bb2482358fbefb98553dcc1867c6f34cc388afcc2750202d1d3b544bd13</citedby><cites>FETCH-LOGICAL-c4106-70ec36bb2482358fbefb98553dcc1867c6f34cc388afcc2750202d1d3b544bd13</cites><orcidid>0000-0001-8402-7697 ; 0000-0003-1104-6146 ; 0000-0002-3929-1541 ; 0000-0001-7394-9186 ; 0000-0002-4183-703X ; 0000-0002-9544-5795 ; 0000-0002-4235-7441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202003136$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202003136$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Meng</creatorcontrib><creatorcontrib>Peng, Hong‐Jie</creatorcontrib><creatorcontrib>Li, Bo‐Quan</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Liu, Xinyan</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Huang, Jia‐Qi</creatorcontrib><title>Electrochemical Phase Evolution of Metal‐Based Pre‐Catalysts for High‐Rate Polysulfide Conversion</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) in working Li‐S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single‐crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all‐phase polysulfide‐involving reactions. Consequently, Co4N enables stable operation of high‐rate (10 C, 16.7 mA cm−2) and electrolyte‐starved (4.7 μL mgS−1) Li‐S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low‐valence metal compounds.
The electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) to polycrystalline CoSx that are rich in active sites in working Li‐S batteries is revealed. This transformation propels all‐phase polysulfide‐involving reactions and enables stable operation of high‐rate and electrolyte‐starved Li‐S batteries.</description><subject>Catalysts</subject><subject>Electrocatalysts</subject><subject>electrochemical phase evolution</subject><subject>Electrochemistry</subject><subject>Evolution</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Metal compounds</subject><subject>Phase transitions</subject><subject>polysulfide conversion</subject><subject>Polysulfides</subject><subject>Reaction kinetics</subject><subject>Sulfur</subject><subject>Sulfurization</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vFCEYh4mxsX_06tGQeOlltsA7MOyxbta2SdWN0TNhmJfuNOxQYaZmb_0I_Yx-EtlsrYkXT7z58fAE-BHylrMZZ0yc2aHHmWCCMeCgXpAjLgWvoGngZZlrgKrRkh-S45xvC681U6_IIQjBQAE_IjfLgG5M0a1x0zsb6GptM9LlfQzT2MeBRk8_4WjDr4fHD2Wno6uEZV7Ykm3zmKmPiV72N-sSfrUj0lUs-RR83yFdxOEeUy6e1-TA25DxzdN6Qr5_XH5bXFbXXy6uFufXlas5U1XD0IFqW1FrAVL7Fn0711JC5xzXqnHKQ-0caG29c6KR5eWi4x20sq7bjsMJOd1771L8MWEezabPDkOwA8YpGwFaKKmk3qHv_0Fv45SGcjsjaqZEw-ZCF2q2p1yKOSf05i71G5u2hjOzq8DsKjDPFZQD7560U7vB7hn_8-cFmO-Bn33A7X905vzz1fKv_DfQ0pVa</recordid><startdate>20200602</startdate><enddate>20200602</enddate><creator>Zhao, Meng</creator><creator>Peng, Hong‐Jie</creator><creator>Li, Bo‐Quan</creator><creator>Chen, Xiao</creator><creator>Xie, Jin</creator><creator>Liu, Xinyan</creator><creator>Zhang, Qiang</creator><creator>Huang, Jia‐Qi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8402-7697</orcidid><orcidid>https://orcid.org/0000-0003-1104-6146</orcidid><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid><orcidid>https://orcid.org/0000-0001-7394-9186</orcidid><orcidid>https://orcid.org/0000-0002-4183-703X</orcidid><orcidid>https://orcid.org/0000-0002-9544-5795</orcidid><orcidid>https://orcid.org/0000-0002-4235-7441</orcidid></search><sort><creationdate>20200602</creationdate><title>Electrochemical Phase Evolution of Metal‐Based Pre‐Catalysts for High‐Rate Polysulfide Conversion</title><author>Zhao, Meng ; Peng, Hong‐Jie ; Li, Bo‐Quan ; Chen, Xiao ; Xie, Jin ; Liu, Xinyan ; Zhang, Qiang ; Huang, Jia‐Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-70ec36bb2482358fbefb98553dcc1867c6f34cc388afcc2750202d1d3b544bd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysts</topic><topic>Electrocatalysts</topic><topic>electrochemical phase evolution</topic><topic>Electrochemistry</topic><topic>Evolution</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Metal compounds</topic><topic>Phase transitions</topic><topic>polysulfide conversion</topic><topic>Polysulfides</topic><topic>Reaction kinetics</topic><topic>Sulfur</topic><topic>Sulfurization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Meng</creatorcontrib><creatorcontrib>Peng, Hong‐Jie</creatorcontrib><creatorcontrib>Li, Bo‐Quan</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Liu, Xinyan</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Huang, Jia‐Qi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Meng</au><au>Peng, Hong‐Jie</au><au>Li, Bo‐Quan</au><au>Chen, Xiao</au><au>Xie, Jin</au><au>Liu, Xinyan</au><au>Zhang, Qiang</au><au>Huang, Jia‐Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Phase Evolution of Metal‐Based Pre‐Catalysts for High‐Rate Polysulfide Conversion</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-06-02</date><risdate>2020</risdate><volume>59</volume><issue>23</issue><spage>9011</spage><epage>9017</epage><pages>9011-9017</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) in working Li‐S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single‐crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all‐phase polysulfide‐involving reactions. Consequently, Co4N enables stable operation of high‐rate (10 C, 16.7 mA cm−2) and electrolyte‐starved (4.7 μL mgS−1) Li‐S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low‐valence metal compounds.
The electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) to polycrystalline CoSx that are rich in active sites in working Li‐S batteries is revealed. This transformation propels all‐phase polysulfide‐involving reactions and enables stable operation of high‐rate and electrolyte‐starved Li‐S batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32203631</pmid><doi>10.1002/anie.202003136</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-8402-7697</orcidid><orcidid>https://orcid.org/0000-0003-1104-6146</orcidid><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid><orcidid>https://orcid.org/0000-0001-7394-9186</orcidid><orcidid>https://orcid.org/0000-0002-4183-703X</orcidid><orcidid>https://orcid.org/0000-0002-9544-5795</orcidid><orcidid>https://orcid.org/0000-0002-4235-7441</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-06, Vol.59 (23), p.9011-9017 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2382656581 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysts Electrocatalysts electrochemical phase evolution Electrochemistry Evolution Lithium Lithium sulfur batteries Metal compounds Phase transitions polysulfide conversion Polysulfides Reaction kinetics Sulfur Sulfurization |
title | Electrochemical Phase Evolution of Metal‐Based Pre‐Catalysts for High‐Rate Polysulfide Conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Phase%20Evolution%20of%20Metal%E2%80%90Based%20Pre%E2%80%90Catalysts%20for%20High%E2%80%90Rate%20Polysulfide%20Conversion&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhao,%20Meng&rft.date=2020-06-02&rft.volume=59&rft.issue=23&rft.spage=9011&rft.epage=9017&rft.pages=9011-9017&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202003136&rft_dat=%3Cproquest_cross%3E2382656581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406270928&rft_id=info:pmid/32203631&rfr_iscdi=true |