Electrochemical Phase Evolution of Metal‐Based Pre‐Catalysts for High‐Rate Polysulfide Conversion

In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-06, Vol.59 (23), p.9011-9017
Hauptverfasser: Zhao, Meng, Peng, Hong‐Jie, Li, Bo‐Quan, Chen, Xiao, Xie, Jin, Liu, Xinyan, Zhang, Qiang, Huang, Jia‐Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9017
container_issue 23
container_start_page 9011
container_title Angewandte Chemie International Edition
container_volume 59
creator Zhao, Meng
Peng, Hong‐Jie
Li, Bo‐Quan
Chen, Xiao
Xie, Jin
Liu, Xinyan
Zhang, Qiang
Huang, Jia‐Qi
description In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) in working Li‐S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single‐crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all‐phase polysulfide‐involving reactions. Consequently, Co4N enables stable operation of high‐rate (10 C, 16.7 mA cm−2) and electrolyte‐starved (4.7 μL mgS−1) Li‐S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low‐valence metal compounds. The electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) to polycrystalline CoSx that are rich in active sites in working Li‐S batteries is revealed. This transformation propels all‐phase polysulfide‐involving reactions and enables stable operation of high‐rate and electrolyte‐starved Li‐S batteries.
doi_str_mv 10.1002/anie.202003136
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2382656581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382656581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-70ec36bb2482358fbefb98553dcc1867c6f34cc388afcc2750202d1d3b544bd13</originalsourceid><addsrcrecordid>eNqFkU9vFCEYh4mxsX_06tGQeOlltsA7MOyxbta2SdWN0TNhmJfuNOxQYaZmb_0I_Yx-EtlsrYkXT7z58fAE-BHylrMZZ0yc2aHHmWCCMeCgXpAjLgWvoGngZZlrgKrRkh-S45xvC681U6_IIQjBQAE_IjfLgG5M0a1x0zsb6GptM9LlfQzT2MeBRk8_4WjDr4fHD2Wno6uEZV7Ykm3zmKmPiV72N-sSfrUj0lUs-RR83yFdxOEeUy6e1-TA25DxzdN6Qr5_XH5bXFbXXy6uFufXlas5U1XD0IFqW1FrAVL7Fn0711JC5xzXqnHKQ-0caG29c6KR5eWi4x20sq7bjsMJOd1771L8MWEezabPDkOwA8YpGwFaKKmk3qHv_0Fv45SGcjsjaqZEw-ZCF2q2p1yKOSf05i71G5u2hjOzq8DsKjDPFZQD7560U7vB7hn_8-cFmO-Bn33A7X905vzz1fKv_DfQ0pVa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406270928</pqid></control><display><type>article</type><title>Electrochemical Phase Evolution of Metal‐Based Pre‐Catalysts for High‐Rate Polysulfide Conversion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Meng ; Peng, Hong‐Jie ; Li, Bo‐Quan ; Chen, Xiao ; Xie, Jin ; Liu, Xinyan ; Zhang, Qiang ; Huang, Jia‐Qi</creator><creatorcontrib>Zhao, Meng ; Peng, Hong‐Jie ; Li, Bo‐Quan ; Chen, Xiao ; Xie, Jin ; Liu, Xinyan ; Zhang, Qiang ; Huang, Jia‐Qi</creatorcontrib><description>In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) in working Li‐S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single‐crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all‐phase polysulfide‐involving reactions. Consequently, Co4N enables stable operation of high‐rate (10 C, 16.7 mA cm−2) and electrolyte‐starved (4.7 μL mgS−1) Li‐S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low‐valence metal compounds. The electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) to polycrystalline CoSx that are rich in active sites in working Li‐S batteries is revealed. This transformation propels all‐phase polysulfide‐involving reactions and enables stable operation of high‐rate and electrolyte‐starved Li‐S batteries.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202003136</identifier><identifier>PMID: 32203631</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Electrocatalysts ; electrochemical phase evolution ; Electrochemistry ; Evolution ; Lithium ; Lithium sulfur batteries ; Metal compounds ; Phase transitions ; polysulfide conversion ; Polysulfides ; Reaction kinetics ; Sulfur ; Sulfurization</subject><ispartof>Angewandte Chemie International Edition, 2020-06, Vol.59 (23), p.9011-9017</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-70ec36bb2482358fbefb98553dcc1867c6f34cc388afcc2750202d1d3b544bd13</citedby><cites>FETCH-LOGICAL-c4106-70ec36bb2482358fbefb98553dcc1867c6f34cc388afcc2750202d1d3b544bd13</cites><orcidid>0000-0001-8402-7697 ; 0000-0003-1104-6146 ; 0000-0002-3929-1541 ; 0000-0001-7394-9186 ; 0000-0002-4183-703X ; 0000-0002-9544-5795 ; 0000-0002-4235-7441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202003136$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202003136$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Meng</creatorcontrib><creatorcontrib>Peng, Hong‐Jie</creatorcontrib><creatorcontrib>Li, Bo‐Quan</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Liu, Xinyan</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Huang, Jia‐Qi</creatorcontrib><title>Electrochemical Phase Evolution of Metal‐Based Pre‐Catalysts for High‐Rate Polysulfide Conversion</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) in working Li‐S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single‐crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all‐phase polysulfide‐involving reactions. Consequently, Co4N enables stable operation of high‐rate (10 C, 16.7 mA cm−2) and electrolyte‐starved (4.7 μL mgS−1) Li‐S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low‐valence metal compounds. The electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) to polycrystalline CoSx that are rich in active sites in working Li‐S batteries is revealed. This transformation propels all‐phase polysulfide‐involving reactions and enables stable operation of high‐rate and electrolyte‐starved Li‐S batteries.</description><subject>Catalysts</subject><subject>Electrocatalysts</subject><subject>electrochemical phase evolution</subject><subject>Electrochemistry</subject><subject>Evolution</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Metal compounds</subject><subject>Phase transitions</subject><subject>polysulfide conversion</subject><subject>Polysulfides</subject><subject>Reaction kinetics</subject><subject>Sulfur</subject><subject>Sulfurization</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vFCEYh4mxsX_06tGQeOlltsA7MOyxbta2SdWN0TNhmJfuNOxQYaZmb_0I_Yx-EtlsrYkXT7z58fAE-BHylrMZZ0yc2aHHmWCCMeCgXpAjLgWvoGngZZlrgKrRkh-S45xvC681U6_IIQjBQAE_IjfLgG5M0a1x0zsb6GptM9LlfQzT2MeBRk8_4WjDr4fHD2Wno6uEZV7Ykm3zmKmPiV72N-sSfrUj0lUs-RR83yFdxOEeUy6e1-TA25DxzdN6Qr5_XH5bXFbXXy6uFufXlas5U1XD0IFqW1FrAVL7Fn0711JC5xzXqnHKQ-0caG29c6KR5eWi4x20sq7bjsMJOd1771L8MWEezabPDkOwA8YpGwFaKKmk3qHv_0Fv45SGcjsjaqZEw-ZCF2q2p1yKOSf05i71G5u2hjOzq8DsKjDPFZQD7560U7vB7hn_8-cFmO-Bn33A7X905vzz1fKv_DfQ0pVa</recordid><startdate>20200602</startdate><enddate>20200602</enddate><creator>Zhao, Meng</creator><creator>Peng, Hong‐Jie</creator><creator>Li, Bo‐Quan</creator><creator>Chen, Xiao</creator><creator>Xie, Jin</creator><creator>Liu, Xinyan</creator><creator>Zhang, Qiang</creator><creator>Huang, Jia‐Qi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8402-7697</orcidid><orcidid>https://orcid.org/0000-0003-1104-6146</orcidid><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid><orcidid>https://orcid.org/0000-0001-7394-9186</orcidid><orcidid>https://orcid.org/0000-0002-4183-703X</orcidid><orcidid>https://orcid.org/0000-0002-9544-5795</orcidid><orcidid>https://orcid.org/0000-0002-4235-7441</orcidid></search><sort><creationdate>20200602</creationdate><title>Electrochemical Phase Evolution of Metal‐Based Pre‐Catalysts for High‐Rate Polysulfide Conversion</title><author>Zhao, Meng ; Peng, Hong‐Jie ; Li, Bo‐Quan ; Chen, Xiao ; Xie, Jin ; Liu, Xinyan ; Zhang, Qiang ; Huang, Jia‐Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-70ec36bb2482358fbefb98553dcc1867c6f34cc388afcc2750202d1d3b544bd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysts</topic><topic>Electrocatalysts</topic><topic>electrochemical phase evolution</topic><topic>Electrochemistry</topic><topic>Evolution</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Metal compounds</topic><topic>Phase transitions</topic><topic>polysulfide conversion</topic><topic>Polysulfides</topic><topic>Reaction kinetics</topic><topic>Sulfur</topic><topic>Sulfurization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Meng</creatorcontrib><creatorcontrib>Peng, Hong‐Jie</creatorcontrib><creatorcontrib>Li, Bo‐Quan</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Liu, Xinyan</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Huang, Jia‐Qi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Meng</au><au>Peng, Hong‐Jie</au><au>Li, Bo‐Quan</au><au>Chen, Xiao</au><au>Xie, Jin</au><au>Liu, Xinyan</au><au>Zhang, Qiang</au><au>Huang, Jia‐Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Phase Evolution of Metal‐Based Pre‐Catalysts for High‐Rate Polysulfide Conversion</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-06-02</date><risdate>2020</risdate><volume>59</volume><issue>23</issue><spage>9011</spage><epage>9017</epage><pages>9011-9017</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) in working Li‐S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single‐crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all‐phase polysulfide‐involving reactions. Consequently, Co4N enables stable operation of high‐rate (10 C, 16.7 mA cm−2) and electrolyte‐starved (4.7 μL mgS−1) Li‐S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low‐valence metal compounds. The electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) to polycrystalline CoSx that are rich in active sites in working Li‐S batteries is revealed. This transformation propels all‐phase polysulfide‐involving reactions and enables stable operation of high‐rate and electrolyte‐starved Li‐S batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32203631</pmid><doi>10.1002/anie.202003136</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-8402-7697</orcidid><orcidid>https://orcid.org/0000-0003-1104-6146</orcidid><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid><orcidid>https://orcid.org/0000-0001-7394-9186</orcidid><orcidid>https://orcid.org/0000-0002-4183-703X</orcidid><orcidid>https://orcid.org/0000-0002-9544-5795</orcidid><orcidid>https://orcid.org/0000-0002-4235-7441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-06, Vol.59 (23), p.9011-9017
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2382656581
source Wiley Online Library Journals Frontfile Complete
subjects Catalysts
Electrocatalysts
electrochemical phase evolution
Electrochemistry
Evolution
Lithium
Lithium sulfur batteries
Metal compounds
Phase transitions
polysulfide conversion
Polysulfides
Reaction kinetics
Sulfur
Sulfurization
title Electrochemical Phase Evolution of Metal‐Based Pre‐Catalysts for High‐Rate Polysulfide Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Phase%20Evolution%20of%20Metal%E2%80%90Based%20Pre%E2%80%90Catalysts%20for%20High%E2%80%90Rate%20Polysulfide%20Conversion&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhao,%20Meng&rft.date=2020-06-02&rft.volume=59&rft.issue=23&rft.spage=9011&rft.epage=9017&rft.pages=9011-9017&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202003136&rft_dat=%3Cproquest_cross%3E2382656581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406270928&rft_id=info:pmid/32203631&rfr_iscdi=true