Realizing spin Hamiltonians in nanoscale active photonic lattices

Spin models arise in the microscopic description of magnetic materials and have been recently used to map certain classes of optimization problems involving large degrees of freedom. In this regard, various optical implementations of such Hamiltonians have been demonstrated to quickly converge to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2020-07, Vol.19 (7), p.725-731
Hauptverfasser: Parto, Midya, Hayenga, William, Marandi, Alireza, Christodoulides, Demetrios N., Khajavikhan, Mercedeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 731
container_issue 7
container_start_page 725
container_title Nature materials
container_volume 19
creator Parto, Midya
Hayenga, William
Marandi, Alireza
Christodoulides, Demetrios N.
Khajavikhan, Mercedeh
description Spin models arise in the microscopic description of magnetic materials and have been recently used to map certain classes of optimization problems involving large degrees of freedom. In this regard, various optical implementations of such Hamiltonians have been demonstrated to quickly converge to the global minimum in the energy landscape. Yet, so far, an integrated nanophotonic platform capable of emulating complex magnetic materials is still missing. Here, we show that the cooperative interplay among vectorial electromagnetic modes in coupled metallic nanolasers can be utilized to implement certain types of spin Hamiltonians. Depending on the topology/geometry of the arrays, these structures can be governed by a classical XY Hamiltonian that exhibits ferromagnetic and antiferromagnetic couplings, as well as geometrical frustration. Our results pave the way towards a scalable nanophotonic platform to study spin exchange interactions and could address a variety of optimization problems. Vectorial electromagnetic modes in coupled metallic nanolasers are used to emulate the behaviour of complex magnetic materials, providing an integrated nanophotonic platform to study spin exchange interactions and map large-scale optimization problems.
doi_str_mv 10.1038/s41563-020-0635-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2382656579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475007464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e90babfa8a4b6322b3c21f3038c5b36125c00ed01610c20ed090d265c6999e1f3</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRbK3-AC8S8OIlOvs1aY6lqBUEQfS8bLabuiXd1Gwi6K93Q6qCoKeZYZ55Z3deQk4pXFLg06sgqESeAoMUkMsU98iYigxTgQj7u5xSxkbkKIQ1AKNS4iEZccaAC5mNyezR6sp9OL9Kwtb5ZKE3rmpr77QPSay99nUwurKJNq17s8n2pe7bJql02zpjwzE5KHUV7MkuTsjzzfXTfJHeP9zezWf3qREAbWpzKHRR6qkWBcb9BTeMljx-w8iCI2XSANglUKRgWJ_lsGQoDeZ5biM5IReD7rapXzsbWrVxwdiq0t7WXVCMTyOOMssjev4LXddd4-PrFBOZBMgEiv8pivFAkPFI0YEyTR1CY0u1bdxGN--KgupdUIMLKrqgehcUxpmznXJXbOzye-Lr7BFgAxBiy69s87P6b9VPHY6Prg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416034073</pqid></control><display><type>article</type><title>Realizing spin Hamiltonians in nanoscale active photonic lattices</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Parto, Midya ; Hayenga, William ; Marandi, Alireza ; Christodoulides, Demetrios N. ; Khajavikhan, Mercedeh</creator><creatorcontrib>Parto, Midya ; Hayenga, William ; Marandi, Alireza ; Christodoulides, Demetrios N. ; Khajavikhan, Mercedeh</creatorcontrib><description>Spin models arise in the microscopic description of magnetic materials and have been recently used to map certain classes of optimization problems involving large degrees of freedom. In this regard, various optical implementations of such Hamiltonians have been demonstrated to quickly converge to the global minimum in the energy landscape. Yet, so far, an integrated nanophotonic platform capable of emulating complex magnetic materials is still missing. Here, we show that the cooperative interplay among vectorial electromagnetic modes in coupled metallic nanolasers can be utilized to implement certain types of spin Hamiltonians. Depending on the topology/geometry of the arrays, these structures can be governed by a classical XY Hamiltonian that exhibits ferromagnetic and antiferromagnetic couplings, as well as geometrical frustration. Our results pave the way towards a scalable nanophotonic platform to study spin exchange interactions and could address a variety of optimization problems. Vectorial electromagnetic modes in coupled metallic nanolasers are used to emulate the behaviour of complex magnetic materials, providing an integrated nanophotonic platform to study spin exchange interactions and map large-scale optimization problems.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-020-0635-6</identifier><identifier>PMID: 32203457</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/1021 ; 639/624/400/385 ; 639/705 ; 639/766/259 ; 639/925/927/1021 ; Antiferromagnetism ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Coupled modes ; Couplings ; Ferromagnetism ; Lattices ; Magnetic materials ; Magnetism ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Optimization ; Spin exchange ; Topology</subject><ispartof>Nature materials, 2020-07, Vol.19 (7), p.725-731</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e90babfa8a4b6322b3c21f3038c5b36125c00ed01610c20ed090d265c6999e1f3</citedby><cites>FETCH-LOGICAL-c400t-e90babfa8a4b6322b3c21f3038c5b36125c00ed01610c20ed090d265c6999e1f3</cites><orcidid>0000-0002-0470-0050 ; 0000-0003-3630-7234 ; 0000-0002-7091-1470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-020-0635-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-020-0635-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parto, Midya</creatorcontrib><creatorcontrib>Hayenga, William</creatorcontrib><creatorcontrib>Marandi, Alireza</creatorcontrib><creatorcontrib>Christodoulides, Demetrios N.</creatorcontrib><creatorcontrib>Khajavikhan, Mercedeh</creatorcontrib><title>Realizing spin Hamiltonians in nanoscale active photonic lattices</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Spin models arise in the microscopic description of magnetic materials and have been recently used to map certain classes of optimization problems involving large degrees of freedom. In this regard, various optical implementations of such Hamiltonians have been demonstrated to quickly converge to the global minimum in the energy landscape. Yet, so far, an integrated nanophotonic platform capable of emulating complex magnetic materials is still missing. Here, we show that the cooperative interplay among vectorial electromagnetic modes in coupled metallic nanolasers can be utilized to implement certain types of spin Hamiltonians. Depending on the topology/geometry of the arrays, these structures can be governed by a classical XY Hamiltonian that exhibits ferromagnetic and antiferromagnetic couplings, as well as geometrical frustration. Our results pave the way towards a scalable nanophotonic platform to study spin exchange interactions and could address a variety of optimization problems. Vectorial electromagnetic modes in coupled metallic nanolasers are used to emulate the behaviour of complex magnetic materials, providing an integrated nanophotonic platform to study spin exchange interactions and map large-scale optimization problems.</description><subject>639/624/400/1021</subject><subject>639/624/400/385</subject><subject>639/705</subject><subject>639/766/259</subject><subject>639/925/927/1021</subject><subject>Antiferromagnetism</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Coupled modes</subject><subject>Couplings</subject><subject>Ferromagnetism</subject><subject>Lattices</subject><subject>Magnetic materials</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optimization</subject><subject>Spin exchange</subject><subject>Topology</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1Lw0AQhhdRbK3-AC8S8OIlOvs1aY6lqBUEQfS8bLabuiXd1Gwi6K93Q6qCoKeZYZ55Z3deQk4pXFLg06sgqESeAoMUkMsU98iYigxTgQj7u5xSxkbkKIQ1AKNS4iEZccaAC5mNyezR6sp9OL9Kwtb5ZKE3rmpr77QPSay99nUwurKJNq17s8n2pe7bJql02zpjwzE5KHUV7MkuTsjzzfXTfJHeP9zezWf3qREAbWpzKHRR6qkWBcb9BTeMljx-w8iCI2XSANglUKRgWJ_lsGQoDeZ5biM5IReD7rapXzsbWrVxwdiq0t7WXVCMTyOOMssjev4LXddd4-PrFBOZBMgEiv8pivFAkPFI0YEyTR1CY0u1bdxGN--KgupdUIMLKrqgehcUxpmznXJXbOzye-Lr7BFgAxBiy69s87P6b9VPHY6Prg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Parto, Midya</creator><creator>Hayenga, William</creator><creator>Marandi, Alireza</creator><creator>Christodoulides, Demetrios N.</creator><creator>Khajavikhan, Mercedeh</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0470-0050</orcidid><orcidid>https://orcid.org/0000-0003-3630-7234</orcidid><orcidid>https://orcid.org/0000-0002-7091-1470</orcidid></search><sort><creationdate>20200701</creationdate><title>Realizing spin Hamiltonians in nanoscale active photonic lattices</title><author>Parto, Midya ; Hayenga, William ; Marandi, Alireza ; Christodoulides, Demetrios N. ; Khajavikhan, Mercedeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e90babfa8a4b6322b3c21f3038c5b36125c00ed01610c20ed090d265c6999e1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/400/1021</topic><topic>639/624/400/385</topic><topic>639/705</topic><topic>639/766/259</topic><topic>639/925/927/1021</topic><topic>Antiferromagnetism</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Coupled modes</topic><topic>Couplings</topic><topic>Ferromagnetism</topic><topic>Lattices</topic><topic>Magnetic materials</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optimization</topic><topic>Spin exchange</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parto, Midya</creatorcontrib><creatorcontrib>Hayenga, William</creatorcontrib><creatorcontrib>Marandi, Alireza</creatorcontrib><creatorcontrib>Christodoulides, Demetrios N.</creatorcontrib><creatorcontrib>Khajavikhan, Mercedeh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parto, Midya</au><au>Hayenga, William</au><au>Marandi, Alireza</au><au>Christodoulides, Demetrios N.</au><au>Khajavikhan, Mercedeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing spin Hamiltonians in nanoscale active photonic lattices</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>19</volume><issue>7</issue><spage>725</spage><epage>731</epage><pages>725-731</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Spin models arise in the microscopic description of magnetic materials and have been recently used to map certain classes of optimization problems involving large degrees of freedom. In this regard, various optical implementations of such Hamiltonians have been demonstrated to quickly converge to the global minimum in the energy landscape. Yet, so far, an integrated nanophotonic platform capable of emulating complex magnetic materials is still missing. Here, we show that the cooperative interplay among vectorial electromagnetic modes in coupled metallic nanolasers can be utilized to implement certain types of spin Hamiltonians. Depending on the topology/geometry of the arrays, these structures can be governed by a classical XY Hamiltonian that exhibits ferromagnetic and antiferromagnetic couplings, as well as geometrical frustration. Our results pave the way towards a scalable nanophotonic platform to study spin exchange interactions and could address a variety of optimization problems. Vectorial electromagnetic modes in coupled metallic nanolasers are used to emulate the behaviour of complex magnetic materials, providing an integrated nanophotonic platform to study spin exchange interactions and map large-scale optimization problems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32203457</pmid><doi>10.1038/s41563-020-0635-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0470-0050</orcidid><orcidid>https://orcid.org/0000-0003-3630-7234</orcidid><orcidid>https://orcid.org/0000-0002-7091-1470</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2020-07, Vol.19 (7), p.725-731
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2382656579
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/624/400/1021
639/624/400/385
639/705
639/766/259
639/925/927/1021
Antiferromagnetism
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Coupled modes
Couplings
Ferromagnetism
Lattices
Magnetic materials
Magnetism
Materials Science
Nanotechnology
Optical and Electronic Materials
Optimization
Spin exchange
Topology
title Realizing spin Hamiltonians in nanoscale active photonic lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20spin%20Hamiltonians%20in%20nanoscale%20active%20photonic%20lattices&rft.jtitle=Nature%20materials&rft.au=Parto,%20Midya&rft.date=2020-07-01&rft.volume=19&rft.issue=7&rft.spage=725&rft.epage=731&rft.pages=725-731&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-020-0635-6&rft_dat=%3Cproquest_cross%3E2475007464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416034073&rft_id=info:pmid/32203457&rfr_iscdi=true