Realizing spin Hamiltonians in nanoscale active photonic lattices
Spin models arise in the microscopic description of magnetic materials and have been recently used to map certain classes of optimization problems involving large degrees of freedom. In this regard, various optical implementations of such Hamiltonians have been demonstrated to quickly converge to th...
Gespeichert in:
Veröffentlicht in: | Nature materials 2020-07, Vol.19 (7), p.725-731 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 731 |
---|---|
container_issue | 7 |
container_start_page | 725 |
container_title | Nature materials |
container_volume | 19 |
creator | Parto, Midya Hayenga, William Marandi, Alireza Christodoulides, Demetrios N. Khajavikhan, Mercedeh |
description | Spin models arise in the microscopic description of magnetic materials and have been recently used to map certain classes of optimization problems involving large degrees of freedom. In this regard, various optical implementations of such Hamiltonians have been demonstrated to quickly converge to the global minimum in the energy landscape. Yet, so far, an integrated nanophotonic platform capable of emulating complex magnetic materials is still missing. Here, we show that the cooperative interplay among vectorial electromagnetic modes in coupled metallic nanolasers can be utilized to implement certain types of spin Hamiltonians. Depending on the topology/geometry of the arrays, these structures can be governed by a classical XY Hamiltonian that exhibits ferromagnetic and antiferromagnetic couplings, as well as geometrical frustration. Our results pave the way towards a scalable nanophotonic platform to study spin exchange interactions and could address a variety of optimization problems.
Vectorial electromagnetic modes in coupled metallic nanolasers are used to emulate the behaviour of complex magnetic materials, providing an integrated nanophotonic platform to study spin exchange interactions and map large-scale optimization problems. |
doi_str_mv | 10.1038/s41563-020-0635-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2382656579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475007464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e90babfa8a4b6322b3c21f3038c5b36125c00ed01610c20ed090d265c6999e1f3</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRbK3-AC8S8OIlOvs1aY6lqBUEQfS8bLabuiXd1Gwi6K93Q6qCoKeZYZ55Z3deQk4pXFLg06sgqESeAoMUkMsU98iYigxTgQj7u5xSxkbkKIQ1AKNS4iEZccaAC5mNyezR6sp9OL9Kwtb5ZKE3rmpr77QPSay99nUwurKJNq17s8n2pe7bJql02zpjwzE5KHUV7MkuTsjzzfXTfJHeP9zezWf3qREAbWpzKHRR6qkWBcb9BTeMljx-w8iCI2XSANglUKRgWJ_lsGQoDeZ5biM5IReD7rapXzsbWrVxwdiq0t7WXVCMTyOOMssjev4LXddd4-PrFBOZBMgEiv8pivFAkPFI0YEyTR1CY0u1bdxGN--KgupdUIMLKrqgehcUxpmznXJXbOzye-Lr7BFgAxBiy69s87P6b9VPHY6Prg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416034073</pqid></control><display><type>article</type><title>Realizing spin Hamiltonians in nanoscale active photonic lattices</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Parto, Midya ; Hayenga, William ; Marandi, Alireza ; Christodoulides, Demetrios N. ; Khajavikhan, Mercedeh</creator><creatorcontrib>Parto, Midya ; Hayenga, William ; Marandi, Alireza ; Christodoulides, Demetrios N. ; Khajavikhan, Mercedeh</creatorcontrib><description>Spin models arise in the microscopic description of magnetic materials and have been recently used to map certain classes of optimization problems involving large degrees of freedom. In this regard, various optical implementations of such Hamiltonians have been demonstrated to quickly converge to the global minimum in the energy landscape. Yet, so far, an integrated nanophotonic platform capable of emulating complex magnetic materials is still missing. Here, we show that the cooperative interplay among vectorial electromagnetic modes in coupled metallic nanolasers can be utilized to implement certain types of spin Hamiltonians. Depending on the topology/geometry of the arrays, these structures can be governed by a classical XY Hamiltonian that exhibits ferromagnetic and antiferromagnetic couplings, as well as geometrical frustration. Our results pave the way towards a scalable nanophotonic platform to study spin exchange interactions and could address a variety of optimization problems.
Vectorial electromagnetic modes in coupled metallic nanolasers are used to emulate the behaviour of complex magnetic materials, providing an integrated nanophotonic platform to study spin exchange interactions and map large-scale optimization problems.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-020-0635-6</identifier><identifier>PMID: 32203457</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/1021 ; 639/624/400/385 ; 639/705 ; 639/766/259 ; 639/925/927/1021 ; Antiferromagnetism ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Coupled modes ; Couplings ; Ferromagnetism ; Lattices ; Magnetic materials ; Magnetism ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Optimization ; Spin exchange ; Topology</subject><ispartof>Nature materials, 2020-07, Vol.19 (7), p.725-731</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e90babfa8a4b6322b3c21f3038c5b36125c00ed01610c20ed090d265c6999e1f3</citedby><cites>FETCH-LOGICAL-c400t-e90babfa8a4b6322b3c21f3038c5b36125c00ed01610c20ed090d265c6999e1f3</cites><orcidid>0000-0002-0470-0050 ; 0000-0003-3630-7234 ; 0000-0002-7091-1470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-020-0635-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-020-0635-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parto, Midya</creatorcontrib><creatorcontrib>Hayenga, William</creatorcontrib><creatorcontrib>Marandi, Alireza</creatorcontrib><creatorcontrib>Christodoulides, Demetrios N.</creatorcontrib><creatorcontrib>Khajavikhan, Mercedeh</creatorcontrib><title>Realizing spin Hamiltonians in nanoscale active photonic lattices</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Spin models arise in the microscopic description of magnetic materials and have been recently used to map certain classes of optimization problems involving large degrees of freedom. In this regard, various optical implementations of such Hamiltonians have been demonstrated to quickly converge to the global minimum in the energy landscape. Yet, so far, an integrated nanophotonic platform capable of emulating complex magnetic materials is still missing. Here, we show that the cooperative interplay among vectorial electromagnetic modes in coupled metallic nanolasers can be utilized to implement certain types of spin Hamiltonians. Depending on the topology/geometry of the arrays, these structures can be governed by a classical XY Hamiltonian that exhibits ferromagnetic and antiferromagnetic couplings, as well as geometrical frustration. Our results pave the way towards a scalable nanophotonic platform to study spin exchange interactions and could address a variety of optimization problems.
Vectorial electromagnetic modes in coupled metallic nanolasers are used to emulate the behaviour of complex magnetic materials, providing an integrated nanophotonic platform to study spin exchange interactions and map large-scale optimization problems.</description><subject>639/624/400/1021</subject><subject>639/624/400/385</subject><subject>639/705</subject><subject>639/766/259</subject><subject>639/925/927/1021</subject><subject>Antiferromagnetism</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Coupled modes</subject><subject>Couplings</subject><subject>Ferromagnetism</subject><subject>Lattices</subject><subject>Magnetic materials</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optimization</subject><subject>Spin exchange</subject><subject>Topology</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1Lw0AQhhdRbK3-AC8S8OIlOvs1aY6lqBUEQfS8bLabuiXd1Gwi6K93Q6qCoKeZYZ55Z3deQk4pXFLg06sgqESeAoMUkMsU98iYigxTgQj7u5xSxkbkKIQ1AKNS4iEZccaAC5mNyezR6sp9OL9Kwtb5ZKE3rmpr77QPSay99nUwurKJNq17s8n2pe7bJql02zpjwzE5KHUV7MkuTsjzzfXTfJHeP9zezWf3qREAbWpzKHRR6qkWBcb9BTeMljx-w8iCI2XSANglUKRgWJ_lsGQoDeZ5biM5IReD7rapXzsbWrVxwdiq0t7WXVCMTyOOMssjev4LXddd4-PrFBOZBMgEiv8pivFAkPFI0YEyTR1CY0u1bdxGN--KgupdUIMLKrqgehcUxpmznXJXbOzye-Lr7BFgAxBiy69s87P6b9VPHY6Prg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Parto, Midya</creator><creator>Hayenga, William</creator><creator>Marandi, Alireza</creator><creator>Christodoulides, Demetrios N.</creator><creator>Khajavikhan, Mercedeh</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0470-0050</orcidid><orcidid>https://orcid.org/0000-0003-3630-7234</orcidid><orcidid>https://orcid.org/0000-0002-7091-1470</orcidid></search><sort><creationdate>20200701</creationdate><title>Realizing spin Hamiltonians in nanoscale active photonic lattices</title><author>Parto, Midya ; Hayenga, William ; Marandi, Alireza ; Christodoulides, Demetrios N. ; Khajavikhan, Mercedeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e90babfa8a4b6322b3c21f3038c5b36125c00ed01610c20ed090d265c6999e1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/400/1021</topic><topic>639/624/400/385</topic><topic>639/705</topic><topic>639/766/259</topic><topic>639/925/927/1021</topic><topic>Antiferromagnetism</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Coupled modes</topic><topic>Couplings</topic><topic>Ferromagnetism</topic><topic>Lattices</topic><topic>Magnetic materials</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optimization</topic><topic>Spin exchange</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parto, Midya</creatorcontrib><creatorcontrib>Hayenga, William</creatorcontrib><creatorcontrib>Marandi, Alireza</creatorcontrib><creatorcontrib>Christodoulides, Demetrios N.</creatorcontrib><creatorcontrib>Khajavikhan, Mercedeh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parto, Midya</au><au>Hayenga, William</au><au>Marandi, Alireza</au><au>Christodoulides, Demetrios N.</au><au>Khajavikhan, Mercedeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing spin Hamiltonians in nanoscale active photonic lattices</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>19</volume><issue>7</issue><spage>725</spage><epage>731</epage><pages>725-731</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Spin models arise in the microscopic description of magnetic materials and have been recently used to map certain classes of optimization problems involving large degrees of freedom. In this regard, various optical implementations of such Hamiltonians have been demonstrated to quickly converge to the global minimum in the energy landscape. Yet, so far, an integrated nanophotonic platform capable of emulating complex magnetic materials is still missing. Here, we show that the cooperative interplay among vectorial electromagnetic modes in coupled metallic nanolasers can be utilized to implement certain types of spin Hamiltonians. Depending on the topology/geometry of the arrays, these structures can be governed by a classical XY Hamiltonian that exhibits ferromagnetic and antiferromagnetic couplings, as well as geometrical frustration. Our results pave the way towards a scalable nanophotonic platform to study spin exchange interactions and could address a variety of optimization problems.
Vectorial electromagnetic modes in coupled metallic nanolasers are used to emulate the behaviour of complex magnetic materials, providing an integrated nanophotonic platform to study spin exchange interactions and map large-scale optimization problems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32203457</pmid><doi>10.1038/s41563-020-0635-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0470-0050</orcidid><orcidid>https://orcid.org/0000-0003-3630-7234</orcidid><orcidid>https://orcid.org/0000-0002-7091-1470</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2020-07, Vol.19 (7), p.725-731 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2382656579 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/624/400/1021 639/624/400/385 639/705 639/766/259 639/925/927/1021 Antiferromagnetism Biomaterials Chemistry and Materials Science Condensed Matter Physics Coupled modes Couplings Ferromagnetism Lattices Magnetic materials Magnetism Materials Science Nanotechnology Optical and Electronic Materials Optimization Spin exchange Topology |
title | Realizing spin Hamiltonians in nanoscale active photonic lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20spin%20Hamiltonians%20in%20nanoscale%20active%20photonic%20lattices&rft.jtitle=Nature%20materials&rft.au=Parto,%20Midya&rft.date=2020-07-01&rft.volume=19&rft.issue=7&rft.spage=725&rft.epage=731&rft.pages=725-731&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-020-0635-6&rft_dat=%3Cproquest_cross%3E2475007464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416034073&rft_id=info:pmid/32203457&rfr_iscdi=true |