RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1

Ribosome-associated quality control (RQC) represents a rescue pathway in eukaryotic cells that is triggered upon translational stalling. Collided ribosomes are recognized for subsequent dissociation followed by degradation of nascent peptides. However, endogenous RQC-inducing sequences and the mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2020-04, Vol.27 (4), p.323-332
Hauptverfasser: Matsuo, Yoshitaka, Tesina, Petr, Nakajima, Shizuka, Mizuno, Masato, Endo, Akinori, Buschauer, Robert, Cheng, Jingdong, Shounai, Okuto, Ikeuchi, Ken, Saeki, Yasushi, Becker, Thomas, Beckmann, Roland, Inada, Toshifumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue 4
container_start_page 323
container_title Nature structural & molecular biology
container_volume 27
creator Matsuo, Yoshitaka
Tesina, Petr
Nakajima, Shizuka
Mizuno, Masato
Endo, Akinori
Buschauer, Robert
Cheng, Jingdong
Shounai, Okuto
Ikeuchi, Ken
Saeki, Yasushi
Becker, Thomas
Beckmann, Roland
Inada, Toshifumi
description Ribosome-associated quality control (RQC) represents a rescue pathway in eukaryotic cells that is triggered upon translational stalling. Collided ribosomes are recognized for subsequent dissociation followed by degradation of nascent peptides. However, endogenous RQC-inducing sequences and the mechanism underlying the ubiquitin-dependent ribosome dissociation remain poorly understood. Here, we identified SDD1 messenger RNA from Saccharomyces cerevisiae as an endogenous RQC substrate and reveal the mechanism of its mRNA-dependent and nascent peptide−dependent translational stalling. In vitro translation of SDD1 mRNA enabled the reconstitution of Hel2-dependent polyubiquitination of collided disomes and, preferentially, trisomes. The distinct trisome architecture, visualized using cryo-EM, provides the structural basis for the more-efficient recognition by Hel2 compared with that of disomes. Subsequently, the Slh1 helicase subunit of the RQC trigger (RQT) complex preferentially dissociates the first stalled polyubiquitinated ribosome in an ATP-dependent manner. Together, these findings provide fundamental mechanistic insights into RQC and its physiological role in maintaining cellular protein homeostasis. Identification of SDD1 mRNA from Saccharomyces cerevisiae as an endogenous RQC substrate allows analysis of the mechanism underlying translational stalling and Hel2-dependent polyubiquitination of collided ribosomes to provide insight into ribosome dissociation.
doi_str_mv 10.1038/s41594-020-0393-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2382656548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387994085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-a62fa8213586c6965bb97ee50bede547548401666463d3d17fc20bfe9451260b3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK3-AC8S8OIlut_ZPUrrFxaktZ6XfExKSpKtuwnov3dLqoLgaQbmmXeGB6Fzgq8JZurGcyI0jzHFMWaaxfoAjYngItZaicOfXrMROvF-gzEVImHHaMQoxYxrPEbPy8Uqym2zreEjKirvbV6lHfjIVZn1tgldbuu6KqCIbBtBW9g1tLb30XIxjXyf-c4FPnqdzcgpOirT2sPZvk7Q2_3davoYz18enqa38zjnTHVxKmmZKkqYUDKXWoos0wmAwBkUIHgiuOKYSCm5ZAUrSFLmFGclaC4IlThjE3Q15G6dfe_Bd6apfA51nbYQPjOUKSqFDDkBvfyDbmzv2vDdjkq05liJQJGByp313kFptq5qUvdpCDY702YwbYJpszNtdNi52Cf3WQPFz8a32gDQAfBh1K7B_Z7-P_ULV2yGuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387994085</pqid></control><display><type>article</type><title>RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Matsuo, Yoshitaka ; Tesina, Petr ; Nakajima, Shizuka ; Mizuno, Masato ; Endo, Akinori ; Buschauer, Robert ; Cheng, Jingdong ; Shounai, Okuto ; Ikeuchi, Ken ; Saeki, Yasushi ; Becker, Thomas ; Beckmann, Roland ; Inada, Toshifumi</creator><creatorcontrib>Matsuo, Yoshitaka ; Tesina, Petr ; Nakajima, Shizuka ; Mizuno, Masato ; Endo, Akinori ; Buschauer, Robert ; Cheng, Jingdong ; Shounai, Okuto ; Ikeuchi, Ken ; Saeki, Yasushi ; Becker, Thomas ; Beckmann, Roland ; Inada, Toshifumi</creatorcontrib><description>Ribosome-associated quality control (RQC) represents a rescue pathway in eukaryotic cells that is triggered upon translational stalling. Collided ribosomes are recognized for subsequent dissociation followed by degradation of nascent peptides. However, endogenous RQC-inducing sequences and the mechanism underlying the ubiquitin-dependent ribosome dissociation remain poorly understood. Here, we identified SDD1 messenger RNA from Saccharomyces cerevisiae as an endogenous RQC substrate and reveal the mechanism of its mRNA-dependent and nascent peptide−dependent translational stalling. In vitro translation of SDD1 mRNA enabled the reconstitution of Hel2-dependent polyubiquitination of collided disomes and, preferentially, trisomes. The distinct trisome architecture, visualized using cryo-EM, provides the structural basis for the more-efficient recognition by Hel2 compared with that of disomes. Subsequently, the Slh1 helicase subunit of the RQC trigger (RQT) complex preferentially dissociates the first stalled polyubiquitinated ribosome in an ATP-dependent manner. Together, these findings provide fundamental mechanistic insights into RQC and its physiological role in maintaining cellular protein homeostasis. Identification of SDD1 mRNA from Saccharomyces cerevisiae as an endogenous RQC substrate allows analysis of the mechanism underlying translational stalling and Hel2-dependent polyubiquitination of collided ribosomes to provide insight into ribosome dissociation.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-020-0393-9</identifier><identifier>PMID: 32203490</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/458/582 ; 631/337/574/1789 ; 631/535/1258/1259 ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - genetics ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Cell Cycle Proteins - chemistry ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - ultrastructure ; DNA helicase ; Fungi ; Homeostasis ; Life Sciences ; Membrane Biology ; mRNA ; Peptides ; Peptides - chemistry ; Peptides - genetics ; Protein Biosynthesis ; Protein Structure ; Quality control ; Ribosomes ; Ribosomes - chemistry ; Ribosomes - genetics ; RNA, Messenger - genetics ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - ultrastructure ; Serine Endopeptidases - chemistry ; Serine Endopeptidases - genetics ; Serine Endopeptidases - ultrastructure ; Stalling ; Substrates ; Translation ; Ubiquitin ; Ubiquitin - chemistry ; Ubiquitin - genetics ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - ultrastructure ; Ubiquitination - genetics ; Yeast</subject><ispartof>Nature structural &amp; molecular biology, 2020-04, Vol.27 (4), p.323-332</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-a62fa8213586c6965bb97ee50bede547548401666463d3d17fc20bfe9451260b3</citedby><cites>FETCH-LOGICAL-c438t-a62fa8213586c6965bb97ee50bede547548401666463d3d17fc20bfe9451260b3</cites><orcidid>0000-0002-9578-7920 ; 0000-0002-9202-5453 ; 0000-0002-2695-588X ; 0000-0001-8458-2738 ; 0000-0003-4442-377X ; 0000-0003-4291-3898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-020-0393-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-020-0393-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsuo, Yoshitaka</creatorcontrib><creatorcontrib>Tesina, Petr</creatorcontrib><creatorcontrib>Nakajima, Shizuka</creatorcontrib><creatorcontrib>Mizuno, Masato</creatorcontrib><creatorcontrib>Endo, Akinori</creatorcontrib><creatorcontrib>Buschauer, Robert</creatorcontrib><creatorcontrib>Cheng, Jingdong</creatorcontrib><creatorcontrib>Shounai, Okuto</creatorcontrib><creatorcontrib>Ikeuchi, Ken</creatorcontrib><creatorcontrib>Saeki, Yasushi</creatorcontrib><creatorcontrib>Becker, Thomas</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><creatorcontrib>Inada, Toshifumi</creatorcontrib><title>RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Ribosome-associated quality control (RQC) represents a rescue pathway in eukaryotic cells that is triggered upon translational stalling. Collided ribosomes are recognized for subsequent dissociation followed by degradation of nascent peptides. However, endogenous RQC-inducing sequences and the mechanism underlying the ubiquitin-dependent ribosome dissociation remain poorly understood. Here, we identified SDD1 messenger RNA from Saccharomyces cerevisiae as an endogenous RQC substrate and reveal the mechanism of its mRNA-dependent and nascent peptide−dependent translational stalling. In vitro translation of SDD1 mRNA enabled the reconstitution of Hel2-dependent polyubiquitination of collided disomes and, preferentially, trisomes. The distinct trisome architecture, visualized using cryo-EM, provides the structural basis for the more-efficient recognition by Hel2 compared with that of disomes. Subsequently, the Slh1 helicase subunit of the RQC trigger (RQT) complex preferentially dissociates the first stalled polyubiquitinated ribosome in an ATP-dependent manner. Together, these findings provide fundamental mechanistic insights into RQC and its physiological role in maintaining cellular protein homeostasis. Identification of SDD1 mRNA from Saccharomyces cerevisiae as an endogenous RQC substrate allows analysis of the mechanism underlying translational stalling and Hel2-dependent polyubiquitination of collided ribosomes to provide insight into ribosome dissociation.</description><subject>631/337/458/582</subject><subject>631/337/574/1789</subject><subject>631/535/1258/1259</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - genetics</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - ultrastructure</subject><subject>DNA helicase</subject><subject>Fungi</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>mRNA</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - genetics</subject><subject>Protein Biosynthesis</subject><subject>Protein Structure</subject><subject>Quality control</subject><subject>Ribosomes</subject><subject>Ribosomes - chemistry</subject><subject>Ribosomes - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - ultrastructure</subject><subject>Serine Endopeptidases - chemistry</subject><subject>Serine Endopeptidases - genetics</subject><subject>Serine Endopeptidases - ultrastructure</subject><subject>Stalling</subject><subject>Substrates</subject><subject>Translation</subject><subject>Ubiquitin</subject><subject>Ubiquitin - chemistry</subject><subject>Ubiquitin - genetics</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - ultrastructure</subject><subject>Ubiquitination - genetics</subject><subject>Yeast</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1Lw0AQhhdRbK3-AC8S8OIlut_ZPUrrFxaktZ6XfExKSpKtuwnov3dLqoLgaQbmmXeGB6Fzgq8JZurGcyI0jzHFMWaaxfoAjYngItZaicOfXrMROvF-gzEVImHHaMQoxYxrPEbPy8Uqym2zreEjKirvbV6lHfjIVZn1tgldbuu6KqCIbBtBW9g1tLb30XIxjXyf-c4FPnqdzcgpOirT2sPZvk7Q2_3davoYz18enqa38zjnTHVxKmmZKkqYUDKXWoos0wmAwBkUIHgiuOKYSCm5ZAUrSFLmFGclaC4IlThjE3Q15G6dfe_Bd6apfA51nbYQPjOUKSqFDDkBvfyDbmzv2vDdjkq05liJQJGByp313kFptq5qUvdpCDY702YwbYJpszNtdNi52Cf3WQPFz8a32gDQAfBh1K7B_Z7-P_ULV2yGuA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Matsuo, Yoshitaka</creator><creator>Tesina, Petr</creator><creator>Nakajima, Shizuka</creator><creator>Mizuno, Masato</creator><creator>Endo, Akinori</creator><creator>Buschauer, Robert</creator><creator>Cheng, Jingdong</creator><creator>Shounai, Okuto</creator><creator>Ikeuchi, Ken</creator><creator>Saeki, Yasushi</creator><creator>Becker, Thomas</creator><creator>Beckmann, Roland</creator><creator>Inada, Toshifumi</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9578-7920</orcidid><orcidid>https://orcid.org/0000-0002-9202-5453</orcidid><orcidid>https://orcid.org/0000-0002-2695-588X</orcidid><orcidid>https://orcid.org/0000-0001-8458-2738</orcidid><orcidid>https://orcid.org/0000-0003-4442-377X</orcidid><orcidid>https://orcid.org/0000-0003-4291-3898</orcidid></search><sort><creationdate>20200401</creationdate><title>RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1</title><author>Matsuo, Yoshitaka ; Tesina, Petr ; Nakajima, Shizuka ; Mizuno, Masato ; Endo, Akinori ; Buschauer, Robert ; Cheng, Jingdong ; Shounai, Okuto ; Ikeuchi, Ken ; Saeki, Yasushi ; Becker, Thomas ; Beckmann, Roland ; Inada, Toshifumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-a62fa8213586c6965bb97ee50bede547548401666463d3d17fc20bfe9451260b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/337/458/582</topic><topic>631/337/574/1789</topic><topic>631/535/1258/1259</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - genetics</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - ultrastructure</topic><topic>DNA helicase</topic><topic>Fungi</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>mRNA</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - genetics</topic><topic>Protein Biosynthesis</topic><topic>Protein Structure</topic><topic>Quality control</topic><topic>Ribosomes</topic><topic>Ribosomes - chemistry</topic><topic>Ribosomes - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - ultrastructure</topic><topic>Serine Endopeptidases - chemistry</topic><topic>Serine Endopeptidases - genetics</topic><topic>Serine Endopeptidases - ultrastructure</topic><topic>Stalling</topic><topic>Substrates</topic><topic>Translation</topic><topic>Ubiquitin</topic><topic>Ubiquitin - chemistry</topic><topic>Ubiquitin - genetics</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - ultrastructure</topic><topic>Ubiquitination - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuo, Yoshitaka</creatorcontrib><creatorcontrib>Tesina, Petr</creatorcontrib><creatorcontrib>Nakajima, Shizuka</creatorcontrib><creatorcontrib>Mizuno, Masato</creatorcontrib><creatorcontrib>Endo, Akinori</creatorcontrib><creatorcontrib>Buschauer, Robert</creatorcontrib><creatorcontrib>Cheng, Jingdong</creatorcontrib><creatorcontrib>Shounai, Okuto</creatorcontrib><creatorcontrib>Ikeuchi, Ken</creatorcontrib><creatorcontrib>Saeki, Yasushi</creatorcontrib><creatorcontrib>Becker, Thomas</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><creatorcontrib>Inada, Toshifumi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuo, Yoshitaka</au><au>Tesina, Petr</au><au>Nakajima, Shizuka</au><au>Mizuno, Masato</au><au>Endo, Akinori</au><au>Buschauer, Robert</au><au>Cheng, Jingdong</au><au>Shounai, Okuto</au><au>Ikeuchi, Ken</au><au>Saeki, Yasushi</au><au>Becker, Thomas</au><au>Beckmann, Roland</au><au>Inada, Toshifumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>27</volume><issue>4</issue><spage>323</spage><epage>332</epage><pages>323-332</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Ribosome-associated quality control (RQC) represents a rescue pathway in eukaryotic cells that is triggered upon translational stalling. Collided ribosomes are recognized for subsequent dissociation followed by degradation of nascent peptides. However, endogenous RQC-inducing sequences and the mechanism underlying the ubiquitin-dependent ribosome dissociation remain poorly understood. Here, we identified SDD1 messenger RNA from Saccharomyces cerevisiae as an endogenous RQC substrate and reveal the mechanism of its mRNA-dependent and nascent peptide−dependent translational stalling. In vitro translation of SDD1 mRNA enabled the reconstitution of Hel2-dependent polyubiquitination of collided disomes and, preferentially, trisomes. The distinct trisome architecture, visualized using cryo-EM, provides the structural basis for the more-efficient recognition by Hel2 compared with that of disomes. Subsequently, the Slh1 helicase subunit of the RQC trigger (RQT) complex preferentially dissociates the first stalled polyubiquitinated ribosome in an ATP-dependent manner. Together, these findings provide fundamental mechanistic insights into RQC and its physiological role in maintaining cellular protein homeostasis. Identification of SDD1 mRNA from Saccharomyces cerevisiae as an endogenous RQC substrate allows analysis of the mechanism underlying translational stalling and Hel2-dependent polyubiquitination of collided ribosomes to provide insight into ribosome dissociation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32203490</pmid><doi>10.1038/s41594-020-0393-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9578-7920</orcidid><orcidid>https://orcid.org/0000-0002-9202-5453</orcidid><orcidid>https://orcid.org/0000-0002-2695-588X</orcidid><orcidid>https://orcid.org/0000-0001-8458-2738</orcidid><orcidid>https://orcid.org/0000-0003-4442-377X</orcidid><orcidid>https://orcid.org/0000-0003-4291-3898</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2020-04, Vol.27 (4), p.323-332
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_miscellaneous_2382656548
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/337/458/582
631/337/574/1789
631/535/1258/1259
Adenosine Triphosphate - chemistry
Adenosine Triphosphate - genetics
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Cell Cycle Proteins - chemistry
Cell Cycle Proteins - genetics
Cell Cycle Proteins - ultrastructure
DNA helicase
Fungi
Homeostasis
Life Sciences
Membrane Biology
mRNA
Peptides
Peptides - chemistry
Peptides - genetics
Protein Biosynthesis
Protein Structure
Quality control
Ribosomes
Ribosomes - chemistry
Ribosomes - genetics
RNA, Messenger - genetics
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - ultrastructure
Serine Endopeptidases - chemistry
Serine Endopeptidases - genetics
Serine Endopeptidases - ultrastructure
Stalling
Substrates
Translation
Ubiquitin
Ubiquitin - chemistry
Ubiquitin - genetics
Ubiquitin-Protein Ligases - chemistry
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - ultrastructure
Ubiquitination - genetics
Yeast
title RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RQT%20complex%20dissociates%20ribosomes%20collided%20on%20endogenous%20RQC%20substrate%20SDD1&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Matsuo,%20Yoshitaka&rft.date=2020-04-01&rft.volume=27&rft.issue=4&rft.spage=323&rft.epage=332&rft.pages=323-332&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-020-0393-9&rft_dat=%3Cproquest_cross%3E2387994085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387994085&rft_id=info:pmid/32203490&rfr_iscdi=true