RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1
Ribosome-associated quality control (RQC) represents a rescue pathway in eukaryotic cells that is triggered upon translational stalling. Collided ribosomes are recognized for subsequent dissociation followed by degradation of nascent peptides. However, endogenous RQC-inducing sequences and the mecha...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2020-04, Vol.27 (4), p.323-332 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | 4 |
container_start_page | 323 |
container_title | Nature structural & molecular biology |
container_volume | 27 |
creator | Matsuo, Yoshitaka Tesina, Petr Nakajima, Shizuka Mizuno, Masato Endo, Akinori Buschauer, Robert Cheng, Jingdong Shounai, Okuto Ikeuchi, Ken Saeki, Yasushi Becker, Thomas Beckmann, Roland Inada, Toshifumi |
description | Ribosome-associated quality control (RQC) represents a rescue pathway in eukaryotic cells that is triggered upon translational stalling. Collided ribosomes are recognized for subsequent dissociation followed by degradation of nascent peptides. However, endogenous RQC-inducing sequences and the mechanism underlying the ubiquitin-dependent ribosome dissociation remain poorly understood. Here, we identified
SDD1
messenger RNA from
Saccharomyces cerevisiae
as an endogenous RQC substrate and reveal the mechanism of its mRNA-dependent and nascent peptide−dependent translational stalling. In vitro translation of
SDD1
mRNA enabled the reconstitution of Hel2-dependent polyubiquitination of collided disomes and, preferentially, trisomes. The distinct trisome architecture, visualized using cryo-EM, provides the structural basis for the more-efficient recognition by Hel2 compared with that of disomes. Subsequently, the Slh1 helicase subunit of the RQC trigger (RQT) complex preferentially dissociates the first stalled polyubiquitinated ribosome in an ATP-dependent manner. Together, these findings provide fundamental mechanistic insights into RQC and its physiological role in maintaining cellular protein homeostasis.
Identification of
SDD1
mRNA from
Saccharomyces cerevisiae
as an endogenous RQC substrate allows analysis of the mechanism underlying translational stalling and Hel2-dependent polyubiquitination of collided ribosomes to provide insight into ribosome dissociation. |
doi_str_mv | 10.1038/s41594-020-0393-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2382656548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387994085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-a62fa8213586c6965bb97ee50bede547548401666463d3d17fc20bfe9451260b3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK3-AC8S8OIlut_ZPUrrFxaktZ6XfExKSpKtuwnov3dLqoLgaQbmmXeGB6Fzgq8JZurGcyI0jzHFMWaaxfoAjYngItZaicOfXrMROvF-gzEVImHHaMQoxYxrPEbPy8Uqym2zreEjKirvbV6lHfjIVZn1tgldbuu6KqCIbBtBW9g1tLb30XIxjXyf-c4FPnqdzcgpOirT2sPZvk7Q2_3davoYz18enqa38zjnTHVxKmmZKkqYUDKXWoos0wmAwBkUIHgiuOKYSCm5ZAUrSFLmFGclaC4IlThjE3Q15G6dfe_Bd6apfA51nbYQPjOUKSqFDDkBvfyDbmzv2vDdjkq05liJQJGByp313kFptq5qUvdpCDY702YwbYJpszNtdNi52Cf3WQPFz8a32gDQAfBh1K7B_Z7-P_ULV2yGuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387994085</pqid></control><display><type>article</type><title>RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Matsuo, Yoshitaka ; Tesina, Petr ; Nakajima, Shizuka ; Mizuno, Masato ; Endo, Akinori ; Buschauer, Robert ; Cheng, Jingdong ; Shounai, Okuto ; Ikeuchi, Ken ; Saeki, Yasushi ; Becker, Thomas ; Beckmann, Roland ; Inada, Toshifumi</creator><creatorcontrib>Matsuo, Yoshitaka ; Tesina, Petr ; Nakajima, Shizuka ; Mizuno, Masato ; Endo, Akinori ; Buschauer, Robert ; Cheng, Jingdong ; Shounai, Okuto ; Ikeuchi, Ken ; Saeki, Yasushi ; Becker, Thomas ; Beckmann, Roland ; Inada, Toshifumi</creatorcontrib><description>Ribosome-associated quality control (RQC) represents a rescue pathway in eukaryotic cells that is triggered upon translational stalling. Collided ribosomes are recognized for subsequent dissociation followed by degradation of nascent peptides. However, endogenous RQC-inducing sequences and the mechanism underlying the ubiquitin-dependent ribosome dissociation remain poorly understood. Here, we identified
SDD1
messenger RNA from
Saccharomyces cerevisiae
as an endogenous RQC substrate and reveal the mechanism of its mRNA-dependent and nascent peptide−dependent translational stalling. In vitro translation of
SDD1
mRNA enabled the reconstitution of Hel2-dependent polyubiquitination of collided disomes and, preferentially, trisomes. The distinct trisome architecture, visualized using cryo-EM, provides the structural basis for the more-efficient recognition by Hel2 compared with that of disomes. Subsequently, the Slh1 helicase subunit of the RQC trigger (RQT) complex preferentially dissociates the first stalled polyubiquitinated ribosome in an ATP-dependent manner. Together, these findings provide fundamental mechanistic insights into RQC and its physiological role in maintaining cellular protein homeostasis.
Identification of
SDD1
mRNA from
Saccharomyces cerevisiae
as an endogenous RQC substrate allows analysis of the mechanism underlying translational stalling and Hel2-dependent polyubiquitination of collided ribosomes to provide insight into ribosome dissociation.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-020-0393-9</identifier><identifier>PMID: 32203490</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/458/582 ; 631/337/574/1789 ; 631/535/1258/1259 ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - genetics ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Cell Cycle Proteins - chemistry ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - ultrastructure ; DNA helicase ; Fungi ; Homeostasis ; Life Sciences ; Membrane Biology ; mRNA ; Peptides ; Peptides - chemistry ; Peptides - genetics ; Protein Biosynthesis ; Protein Structure ; Quality control ; Ribosomes ; Ribosomes - chemistry ; Ribosomes - genetics ; RNA, Messenger - genetics ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - ultrastructure ; Serine Endopeptidases - chemistry ; Serine Endopeptidases - genetics ; Serine Endopeptidases - ultrastructure ; Stalling ; Substrates ; Translation ; Ubiquitin ; Ubiquitin - chemistry ; Ubiquitin - genetics ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - ultrastructure ; Ubiquitination - genetics ; Yeast</subject><ispartof>Nature structural & molecular biology, 2020-04, Vol.27 (4), p.323-332</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-a62fa8213586c6965bb97ee50bede547548401666463d3d17fc20bfe9451260b3</citedby><cites>FETCH-LOGICAL-c438t-a62fa8213586c6965bb97ee50bede547548401666463d3d17fc20bfe9451260b3</cites><orcidid>0000-0002-9578-7920 ; 0000-0002-9202-5453 ; 0000-0002-2695-588X ; 0000-0001-8458-2738 ; 0000-0003-4442-377X ; 0000-0003-4291-3898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-020-0393-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-020-0393-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsuo, Yoshitaka</creatorcontrib><creatorcontrib>Tesina, Petr</creatorcontrib><creatorcontrib>Nakajima, Shizuka</creatorcontrib><creatorcontrib>Mizuno, Masato</creatorcontrib><creatorcontrib>Endo, Akinori</creatorcontrib><creatorcontrib>Buschauer, Robert</creatorcontrib><creatorcontrib>Cheng, Jingdong</creatorcontrib><creatorcontrib>Shounai, Okuto</creatorcontrib><creatorcontrib>Ikeuchi, Ken</creatorcontrib><creatorcontrib>Saeki, Yasushi</creatorcontrib><creatorcontrib>Becker, Thomas</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><creatorcontrib>Inada, Toshifumi</creatorcontrib><title>RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Ribosome-associated quality control (RQC) represents a rescue pathway in eukaryotic cells that is triggered upon translational stalling. Collided ribosomes are recognized for subsequent dissociation followed by degradation of nascent peptides. However, endogenous RQC-inducing sequences and the mechanism underlying the ubiquitin-dependent ribosome dissociation remain poorly understood. Here, we identified
SDD1
messenger RNA from
Saccharomyces cerevisiae
as an endogenous RQC substrate and reveal the mechanism of its mRNA-dependent and nascent peptide−dependent translational stalling. In vitro translation of
SDD1
mRNA enabled the reconstitution of Hel2-dependent polyubiquitination of collided disomes and, preferentially, trisomes. The distinct trisome architecture, visualized using cryo-EM, provides the structural basis for the more-efficient recognition by Hel2 compared with that of disomes. Subsequently, the Slh1 helicase subunit of the RQC trigger (RQT) complex preferentially dissociates the first stalled polyubiquitinated ribosome in an ATP-dependent manner. Together, these findings provide fundamental mechanistic insights into RQC and its physiological role in maintaining cellular protein homeostasis.
Identification of
SDD1
mRNA from
Saccharomyces cerevisiae
as an endogenous RQC substrate allows analysis of the mechanism underlying translational stalling and Hel2-dependent polyubiquitination of collided ribosomes to provide insight into ribosome dissociation.</description><subject>631/337/458/582</subject><subject>631/337/574/1789</subject><subject>631/535/1258/1259</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - genetics</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - ultrastructure</subject><subject>DNA helicase</subject><subject>Fungi</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>mRNA</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - genetics</subject><subject>Protein Biosynthesis</subject><subject>Protein Structure</subject><subject>Quality control</subject><subject>Ribosomes</subject><subject>Ribosomes - chemistry</subject><subject>Ribosomes - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - ultrastructure</subject><subject>Serine Endopeptidases - chemistry</subject><subject>Serine Endopeptidases - genetics</subject><subject>Serine Endopeptidases - ultrastructure</subject><subject>Stalling</subject><subject>Substrates</subject><subject>Translation</subject><subject>Ubiquitin</subject><subject>Ubiquitin - chemistry</subject><subject>Ubiquitin - genetics</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - ultrastructure</subject><subject>Ubiquitination - genetics</subject><subject>Yeast</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1Lw0AQhhdRbK3-AC8S8OIlut_ZPUrrFxaktZ6XfExKSpKtuwnov3dLqoLgaQbmmXeGB6Fzgq8JZurGcyI0jzHFMWaaxfoAjYngItZaicOfXrMROvF-gzEVImHHaMQoxYxrPEbPy8Uqym2zreEjKirvbV6lHfjIVZn1tgldbuu6KqCIbBtBW9g1tLb30XIxjXyf-c4FPnqdzcgpOirT2sPZvk7Q2_3davoYz18enqa38zjnTHVxKmmZKkqYUDKXWoos0wmAwBkUIHgiuOKYSCm5ZAUrSFLmFGclaC4IlThjE3Q15G6dfe_Bd6apfA51nbYQPjOUKSqFDDkBvfyDbmzv2vDdjkq05liJQJGByp313kFptq5qUvdpCDY702YwbYJpszNtdNi52Cf3WQPFz8a32gDQAfBh1K7B_Z7-P_ULV2yGuA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Matsuo, Yoshitaka</creator><creator>Tesina, Petr</creator><creator>Nakajima, Shizuka</creator><creator>Mizuno, Masato</creator><creator>Endo, Akinori</creator><creator>Buschauer, Robert</creator><creator>Cheng, Jingdong</creator><creator>Shounai, Okuto</creator><creator>Ikeuchi, Ken</creator><creator>Saeki, Yasushi</creator><creator>Becker, Thomas</creator><creator>Beckmann, Roland</creator><creator>Inada, Toshifumi</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9578-7920</orcidid><orcidid>https://orcid.org/0000-0002-9202-5453</orcidid><orcidid>https://orcid.org/0000-0002-2695-588X</orcidid><orcidid>https://orcid.org/0000-0001-8458-2738</orcidid><orcidid>https://orcid.org/0000-0003-4442-377X</orcidid><orcidid>https://orcid.org/0000-0003-4291-3898</orcidid></search><sort><creationdate>20200401</creationdate><title>RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1</title><author>Matsuo, Yoshitaka ; Tesina, Petr ; Nakajima, Shizuka ; Mizuno, Masato ; Endo, Akinori ; Buschauer, Robert ; Cheng, Jingdong ; Shounai, Okuto ; Ikeuchi, Ken ; Saeki, Yasushi ; Becker, Thomas ; Beckmann, Roland ; Inada, Toshifumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-a62fa8213586c6965bb97ee50bede547548401666463d3d17fc20bfe9451260b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/337/458/582</topic><topic>631/337/574/1789</topic><topic>631/535/1258/1259</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - genetics</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - ultrastructure</topic><topic>DNA helicase</topic><topic>Fungi</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>mRNA</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - genetics</topic><topic>Protein Biosynthesis</topic><topic>Protein Structure</topic><topic>Quality control</topic><topic>Ribosomes</topic><topic>Ribosomes - chemistry</topic><topic>Ribosomes - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - ultrastructure</topic><topic>Serine Endopeptidases - chemistry</topic><topic>Serine Endopeptidases - genetics</topic><topic>Serine Endopeptidases - ultrastructure</topic><topic>Stalling</topic><topic>Substrates</topic><topic>Translation</topic><topic>Ubiquitin</topic><topic>Ubiquitin - chemistry</topic><topic>Ubiquitin - genetics</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - ultrastructure</topic><topic>Ubiquitination - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuo, Yoshitaka</creatorcontrib><creatorcontrib>Tesina, Petr</creatorcontrib><creatorcontrib>Nakajima, Shizuka</creatorcontrib><creatorcontrib>Mizuno, Masato</creatorcontrib><creatorcontrib>Endo, Akinori</creatorcontrib><creatorcontrib>Buschauer, Robert</creatorcontrib><creatorcontrib>Cheng, Jingdong</creatorcontrib><creatorcontrib>Shounai, Okuto</creatorcontrib><creatorcontrib>Ikeuchi, Ken</creatorcontrib><creatorcontrib>Saeki, Yasushi</creatorcontrib><creatorcontrib>Becker, Thomas</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><creatorcontrib>Inada, Toshifumi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuo, Yoshitaka</au><au>Tesina, Petr</au><au>Nakajima, Shizuka</au><au>Mizuno, Masato</au><au>Endo, Akinori</au><au>Buschauer, Robert</au><au>Cheng, Jingdong</au><au>Shounai, Okuto</au><au>Ikeuchi, Ken</au><au>Saeki, Yasushi</au><au>Becker, Thomas</au><au>Beckmann, Roland</au><au>Inada, Toshifumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>27</volume><issue>4</issue><spage>323</spage><epage>332</epage><pages>323-332</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Ribosome-associated quality control (RQC) represents a rescue pathway in eukaryotic cells that is triggered upon translational stalling. Collided ribosomes are recognized for subsequent dissociation followed by degradation of nascent peptides. However, endogenous RQC-inducing sequences and the mechanism underlying the ubiquitin-dependent ribosome dissociation remain poorly understood. Here, we identified
SDD1
messenger RNA from
Saccharomyces cerevisiae
as an endogenous RQC substrate and reveal the mechanism of its mRNA-dependent and nascent peptide−dependent translational stalling. In vitro translation of
SDD1
mRNA enabled the reconstitution of Hel2-dependent polyubiquitination of collided disomes and, preferentially, trisomes. The distinct trisome architecture, visualized using cryo-EM, provides the structural basis for the more-efficient recognition by Hel2 compared with that of disomes. Subsequently, the Slh1 helicase subunit of the RQC trigger (RQT) complex preferentially dissociates the first stalled polyubiquitinated ribosome in an ATP-dependent manner. Together, these findings provide fundamental mechanistic insights into RQC and its physiological role in maintaining cellular protein homeostasis.
Identification of
SDD1
mRNA from
Saccharomyces cerevisiae
as an endogenous RQC substrate allows analysis of the mechanism underlying translational stalling and Hel2-dependent polyubiquitination of collided ribosomes to provide insight into ribosome dissociation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32203490</pmid><doi>10.1038/s41594-020-0393-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9578-7920</orcidid><orcidid>https://orcid.org/0000-0002-9202-5453</orcidid><orcidid>https://orcid.org/0000-0002-2695-588X</orcidid><orcidid>https://orcid.org/0000-0001-8458-2738</orcidid><orcidid>https://orcid.org/0000-0003-4442-377X</orcidid><orcidid>https://orcid.org/0000-0003-4291-3898</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2020-04, Vol.27 (4), p.323-332 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_proquest_miscellaneous_2382656548 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/337/458/582 631/337/574/1789 631/535/1258/1259 Adenosine Triphosphate - chemistry Adenosine Triphosphate - genetics Biochemistry Biological Microscopy Biomedical and Life Sciences Cell Cycle Proteins - chemistry Cell Cycle Proteins - genetics Cell Cycle Proteins - ultrastructure DNA helicase Fungi Homeostasis Life Sciences Membrane Biology mRNA Peptides Peptides - chemistry Peptides - genetics Protein Biosynthesis Protein Structure Quality control Ribosomes Ribosomes - chemistry Ribosomes - genetics RNA, Messenger - genetics Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - ultrastructure Serine Endopeptidases - chemistry Serine Endopeptidases - genetics Serine Endopeptidases - ultrastructure Stalling Substrates Translation Ubiquitin Ubiquitin - chemistry Ubiquitin - genetics Ubiquitin-Protein Ligases - chemistry Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - ultrastructure Ubiquitination - genetics Yeast |
title | RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RQT%20complex%20dissociates%20ribosomes%20collided%20on%20endogenous%20RQC%20substrate%20SDD1&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Matsuo,%20Yoshitaka&rft.date=2020-04-01&rft.volume=27&rft.issue=4&rft.spage=323&rft.epage=332&rft.pages=323-332&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-020-0393-9&rft_dat=%3Cproquest_cross%3E2387994085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387994085&rft_id=info:pmid/32203490&rfr_iscdi=true |