Ab initio relativistic potential energy surfaces of benzene–Xe complex with application to intermolecular vibrations

The benzene–Xe (BXe) complex in its electronic ground state is studied using ab initio methods. Since this complex contains the heavy Xe atom, the relativistic effects cannot be neglected. We test two different approaches that describe the scalar relativistic effects in the framework of the coupled-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-03, Vol.152 (11), p.114116-114116
Hauptverfasser: Shirkov, Leonid, Sladek, Vladimir, Makarewicz, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114116
container_issue 11
container_start_page 114116
container_title The Journal of chemical physics
container_volume 152
creator Shirkov, Leonid
Sladek, Vladimir
Makarewicz, Jan
description The benzene–Xe (BXe) complex in its electronic ground state is studied using ab initio methods. Since this complex contains the heavy Xe atom, the relativistic effects cannot be neglected. We test two different approaches that describe the scalar relativistic effects in the framework of the coupled-cluster level of theory with single, double, and perturbative triple excitations, used for the interaction energy calculations. The first one is based on the small core pseudopotential (PP), and the second one is based on the explicit treatment of scalar relativistic effects using the Douglas–Kroll–Hess (DKH) Hamiltonian. A few basis sets are tested with the PP and DKH, and for each one, the analytical potential energy surface (PES) is constructed. It is shown that the difference between PESs determined with PP and DKH methods is small, if the orbitals of the 4d subshell in Xe are correlated. We select the most appropriate approach for the calculation of the potential energy surface of BXe, with respect to accuracy and computational cost. The optimal level of theory includes a small Dunning’s basis set for the benzene monomer and a larger PP basis set for Xe supplemented by midbond functions. The PES obtained using such an approach provides a reasonable accuracy when compared to the empirical one derived from the microwave spectra of BXe. The empirical and the theoretical values of intermolecular vibrational energies agree within 0.5 cm−1 up to second overtones. The vibrational energy level pattern of BXe is characterized by a distinct polyad structure.
doi_str_mv 10.1063/1.5140728
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2381848992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379861498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-404dc6d0ce286971063596d1b06977dc24e18d8dc3dc857122893a47fd3d48503</originalsourceid><addsrcrecordid>eNp90d1qFDEUB_AgFnetXvgCEvBGhan52pnksiy1Fgq9UfBuyCRnNEtmMiaZrdsr36Fv6JOYdrcKgl6Fk_z4c3IOQi8oOaGk5u_oyYoK0jD5CC0pkapqakUeoyUhjFaqJvUCPU1pQwihDRNP0IIzqpTgaom2px12o8su4AheZ7d1KTuDp5BhzE57DCPELzuc5thrAwmHHncw3pTrnz9uPwM2YZg8fMfXLn_Fepq8MyUmjDiHkpwhDsGDmb2OeOu6eP-WnqGjXvsEzw_nMfr0_uzj-kN1eXV-sT69rAyXPFeCCGtqSwwwWavm7rMrVVvakVI11jABVFppDbdGrhrKmFRci6a33Aq5IvwYvd7nTjF8myHldnDJgPd6hDCnlnFJpZBKsUJf_UU3YY5j6a6oRsmaCiWLerNXJoaUIvTtFN2g466lpL3rr6XtYRnFvjwkzt0A9rd8mH4Bb_cgGZfvB_PftH_ibYh_YDvZnv8C4COh8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379861498</pqid></control><display><type>article</type><title>Ab initio relativistic potential energy surfaces of benzene–Xe complex with application to intermolecular vibrations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shirkov, Leonid ; Sladek, Vladimir ; Makarewicz, Jan</creator><creatorcontrib>Shirkov, Leonid ; Sladek, Vladimir ; Makarewicz, Jan</creatorcontrib><description>The benzene–Xe (BXe) complex in its electronic ground state is studied using ab initio methods. Since this complex contains the heavy Xe atom, the relativistic effects cannot be neglected. We test two different approaches that describe the scalar relativistic effects in the framework of the coupled-cluster level of theory with single, double, and perturbative triple excitations, used for the interaction energy calculations. The first one is based on the small core pseudopotential (PP), and the second one is based on the explicit treatment of scalar relativistic effects using the Douglas–Kroll–Hess (DKH) Hamiltonian. A few basis sets are tested with the PP and DKH, and for each one, the analytical potential energy surface (PES) is constructed. It is shown that the difference between PESs determined with PP and DKH methods is small, if the orbitals of the 4d subshell in Xe are correlated. We select the most appropriate approach for the calculation of the potential energy surface of BXe, with respect to accuracy and computational cost. The optimal level of theory includes a small Dunning’s basis set for the benzene monomer and a larger PP basis set for Xe supplemented by midbond functions. The PES obtained using such an approach provides a reasonable accuracy when compared to the empirical one derived from the microwave spectra of BXe. The empirical and the theoretical values of intermolecular vibrational energies agree within 0.5 cm−1 up to second overtones. The vibrational energy level pattern of BXe is characterized by a distinct polyad structure.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5140728</identifier><identifier>PMID: 32199439</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Benzene ; Empirical analysis ; Energy levels ; Hydrocarbons ; Mathematical analysis ; Microwave spectra ; Potential energy ; Relativistic effects</subject><ispartof>The Journal of chemical physics, 2020-03, Vol.152 (11), p.114116-114116</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-404dc6d0ce286971063596d1b06977dc24e18d8dc3dc857122893a47fd3d48503</citedby><cites>FETCH-LOGICAL-c383t-404dc6d0ce286971063596d1b06977dc24e18d8dc3dc857122893a47fd3d48503</cites><orcidid>0000-0002-6675-0504 ; 0000-0003-4351-5066 ; 0000-0001-5332-7558 ; 0000000266750504 ; 0000000153327558 ; 0000000343515066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5140728$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32199439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirkov, Leonid</creatorcontrib><creatorcontrib>Sladek, Vladimir</creatorcontrib><creatorcontrib>Makarewicz, Jan</creatorcontrib><title>Ab initio relativistic potential energy surfaces of benzene–Xe complex with application to intermolecular vibrations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The benzene–Xe (BXe) complex in its electronic ground state is studied using ab initio methods. Since this complex contains the heavy Xe atom, the relativistic effects cannot be neglected. We test two different approaches that describe the scalar relativistic effects in the framework of the coupled-cluster level of theory with single, double, and perturbative triple excitations, used for the interaction energy calculations. The first one is based on the small core pseudopotential (PP), and the second one is based on the explicit treatment of scalar relativistic effects using the Douglas–Kroll–Hess (DKH) Hamiltonian. A few basis sets are tested with the PP and DKH, and for each one, the analytical potential energy surface (PES) is constructed. It is shown that the difference between PESs determined with PP and DKH methods is small, if the orbitals of the 4d subshell in Xe are correlated. We select the most appropriate approach for the calculation of the potential energy surface of BXe, with respect to accuracy and computational cost. The optimal level of theory includes a small Dunning’s basis set for the benzene monomer and a larger PP basis set for Xe supplemented by midbond functions. The PES obtained using such an approach provides a reasonable accuracy when compared to the empirical one derived from the microwave spectra of BXe. The empirical and the theoretical values of intermolecular vibrational energies agree within 0.5 cm−1 up to second overtones. The vibrational energy level pattern of BXe is characterized by a distinct polyad structure.</description><subject>Benzene</subject><subject>Empirical analysis</subject><subject>Energy levels</subject><subject>Hydrocarbons</subject><subject>Mathematical analysis</subject><subject>Microwave spectra</subject><subject>Potential energy</subject><subject>Relativistic effects</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90d1qFDEUB_AgFnetXvgCEvBGhan52pnksiy1Fgq9UfBuyCRnNEtmMiaZrdsr36Fv6JOYdrcKgl6Fk_z4c3IOQi8oOaGk5u_oyYoK0jD5CC0pkapqakUeoyUhjFaqJvUCPU1pQwihDRNP0IIzqpTgaom2px12o8su4AheZ7d1KTuDp5BhzE57DCPELzuc5thrAwmHHncw3pTrnz9uPwM2YZg8fMfXLn_Fepq8MyUmjDiHkpwhDsGDmb2OeOu6eP-WnqGjXvsEzw_nMfr0_uzj-kN1eXV-sT69rAyXPFeCCGtqSwwwWavm7rMrVVvakVI11jABVFppDbdGrhrKmFRci6a33Aq5IvwYvd7nTjF8myHldnDJgPd6hDCnlnFJpZBKsUJf_UU3YY5j6a6oRsmaCiWLerNXJoaUIvTtFN2g466lpL3rr6XtYRnFvjwkzt0A9rd8mH4Bb_cgGZfvB_PftH_ibYh_YDvZnv8C4COh8A</recordid><startdate>20200321</startdate><enddate>20200321</enddate><creator>Shirkov, Leonid</creator><creator>Sladek, Vladimir</creator><creator>Makarewicz, Jan</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6675-0504</orcidid><orcidid>https://orcid.org/0000-0003-4351-5066</orcidid><orcidid>https://orcid.org/0000-0001-5332-7558</orcidid><orcidid>https://orcid.org/0000000266750504</orcidid><orcidid>https://orcid.org/0000000153327558</orcidid><orcidid>https://orcid.org/0000000343515066</orcidid></search><sort><creationdate>20200321</creationdate><title>Ab initio relativistic potential energy surfaces of benzene–Xe complex with application to intermolecular vibrations</title><author>Shirkov, Leonid ; Sladek, Vladimir ; Makarewicz, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-404dc6d0ce286971063596d1b06977dc24e18d8dc3dc857122893a47fd3d48503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benzene</topic><topic>Empirical analysis</topic><topic>Energy levels</topic><topic>Hydrocarbons</topic><topic>Mathematical analysis</topic><topic>Microwave spectra</topic><topic>Potential energy</topic><topic>Relativistic effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirkov, Leonid</creatorcontrib><creatorcontrib>Sladek, Vladimir</creatorcontrib><creatorcontrib>Makarewicz, Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirkov, Leonid</au><au>Sladek, Vladimir</au><au>Makarewicz, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio relativistic potential energy surfaces of benzene–Xe complex with application to intermolecular vibrations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-03-21</date><risdate>2020</risdate><volume>152</volume><issue>11</issue><spage>114116</spage><epage>114116</epage><pages>114116-114116</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The benzene–Xe (BXe) complex in its electronic ground state is studied using ab initio methods. Since this complex contains the heavy Xe atom, the relativistic effects cannot be neglected. We test two different approaches that describe the scalar relativistic effects in the framework of the coupled-cluster level of theory with single, double, and perturbative triple excitations, used for the interaction energy calculations. The first one is based on the small core pseudopotential (PP), and the second one is based on the explicit treatment of scalar relativistic effects using the Douglas–Kroll–Hess (DKH) Hamiltonian. A few basis sets are tested with the PP and DKH, and for each one, the analytical potential energy surface (PES) is constructed. It is shown that the difference between PESs determined with PP and DKH methods is small, if the orbitals of the 4d subshell in Xe are correlated. We select the most appropriate approach for the calculation of the potential energy surface of BXe, with respect to accuracy and computational cost. The optimal level of theory includes a small Dunning’s basis set for the benzene monomer and a larger PP basis set for Xe supplemented by midbond functions. The PES obtained using such an approach provides a reasonable accuracy when compared to the empirical one derived from the microwave spectra of BXe. The empirical and the theoretical values of intermolecular vibrational energies agree within 0.5 cm−1 up to second overtones. The vibrational energy level pattern of BXe is characterized by a distinct polyad structure.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32199439</pmid><doi>10.1063/1.5140728</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6675-0504</orcidid><orcidid>https://orcid.org/0000-0003-4351-5066</orcidid><orcidid>https://orcid.org/0000-0001-5332-7558</orcidid><orcidid>https://orcid.org/0000000266750504</orcidid><orcidid>https://orcid.org/0000000153327558</orcidid><orcidid>https://orcid.org/0000000343515066</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-03, Vol.152 (11), p.114116-114116
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2381848992
source AIP Journals Complete; Alma/SFX Local Collection
subjects Benzene
Empirical analysis
Energy levels
Hydrocarbons
Mathematical analysis
Microwave spectra
Potential energy
Relativistic effects
title Ab initio relativistic potential energy surfaces of benzene–Xe complex with application to intermolecular vibrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20relativistic%20potential%20energy%20surfaces%20of%20benzene%E2%80%93Xe%20complex%20with%20application%20to%20intermolecular%20vibrations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Shirkov,%20Leonid&rft.date=2020-03-21&rft.volume=152&rft.issue=11&rft.spage=114116&rft.epage=114116&rft.pages=114116-114116&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5140728&rft_dat=%3Cproquest_pubme%3E2379861498%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379861498&rft_id=info:pmid/32199439&rfr_iscdi=true