Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation
Changes in the structure of double-stranded (ds) DNA with temperature affect processes in thermophilic organisms and are important for nanotechnological applications. Here we investigate temperature-dependent conformational changes of dsDNA at the scale of several helical turns and at the base pair...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2020-04, Vol.16 (4), p.2857-2863 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2863 |
---|---|
container_issue | 4 |
container_start_page | 2857 |
container_title | Journal of chemical theory and computation |
container_volume | 16 |
creator | Dohnalová, Hana Dršata, Tomáš Šponer, Jiří Zacharias, Martin Lipfert, Jan Lankaš, Filip |
description | Changes in the structure of double-stranded (ds) DNA with temperature affect processes in thermophilic organisms and are important for nanotechnological applications. Here we investigate temperature-dependent conformational changes of dsDNA at the scale of several helical turns and at the base pair step level, inferred from extensive all-atom molecular dynamics simulations of DNA at temperatures from 7 to 47 °C. Our results suggest that, contrary to twist, the overall bending of dsDNA without A-tracts depends only very weakly on temperature, due to the mutual compensation of directional local bends. Investigating DNA length as a function of temperature, we find that the sum of distances between base pair centers (the wire length) exhibits a large expansion coefficient of ∼2 × 10–4 °C–1, similar to values reported for thermoplastic materials. However, the wire length increase with temperature is absorbed by expanding helix radius, so the length measured along the helical axis (the spring length) seems to suggest a very small negative thermal expansion coefficient. These compensatory mechanisms contribute to thermal stability of DNA structure on the biologically relevant scale of tens of base pairs and longer. |
doi_str_mv | 10.1021/acs.jctc.0c00037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2381626800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391970384</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-c29f65dea405953815f6ce059a6fd57854f85d0b800552498c939d21ede5fc8b3</originalsourceid><addsrcrecordid>eNp1kTFPwzAQhS0EoqWwMyFLLAyk2HGcxmylLRSpwECZI9c5l1SJXexk6L_HpS0DEtOddN97d7qH0CUlfUpieieV769Uo_pEEULY4Ah1KU9EJNI4Pf7tadZBZ96vAsGSmJ2iDoupSBmjXVSObL0G42Vj3Qa_gPqUpvS1x6XBcwgjJ5vWAR5DoAowCrDVePw6xGPbLirAU6hKJSv83rhWbdF7_BDI0iyxNAWeVNYsZVNac45OtKw8XOxrD308TuajaTR7e3oeDWeRZGnSRCoWOuUFyIRwwVlGuU4VhF6muuCDjCc64wVZZIRwHiciU4KJIqZQANcqW7Aeutn5rp39asE3eV16BVUlDdjW53HwDO8J-oBe_0FXtnUmXBcoQcWAsCwJFNlRylnvHeh87cpauk1OSb6NIQ8x5NsY8n0MQXK1N24XNRS_gsPfA3C7A36kh6X_-n0DuDeS6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391970384</pqid></control><display><type>article</type><title>Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation</title><source>American Chemical Society Journals</source><creator>Dohnalová, Hana ; Dršata, Tomáš ; Šponer, Jiří ; Zacharias, Martin ; Lipfert, Jan ; Lankaš, Filip</creator><creatorcontrib>Dohnalová, Hana ; Dršata, Tomáš ; Šponer, Jiří ; Zacharias, Martin ; Lipfert, Jan ; Lankaš, Filip</creatorcontrib><description>Changes in the structure of double-stranded (ds) DNA with temperature affect processes in thermophilic organisms and are important for nanotechnological applications. Here we investigate temperature-dependent conformational changes of dsDNA at the scale of several helical turns and at the base pair step level, inferred from extensive all-atom molecular dynamics simulations of DNA at temperatures from 7 to 47 °C. Our results suggest that, contrary to twist, the overall bending of dsDNA without A-tracts depends only very weakly on temperature, due to the mutual compensation of directional local bends. Investigating DNA length as a function of temperature, we find that the sum of distances between base pair centers (the wire length) exhibits a large expansion coefficient of ∼2 × 10–4 °C–1, similar to values reported for thermoplastic materials. However, the wire length increase with temperature is absorbed by expanding helix radius, so the length measured along the helical axis (the spring length) seems to suggest a very small negative thermal expansion coefficient. These compensatory mechanisms contribute to thermal stability of DNA structure on the biologically relevant scale of tens of base pairs and longer.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.0c00037</identifier><identifier>PMID: 32196331</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bending ; Bends ; Deoxyribonucleic acid ; DNA ; Elongated structure ; Helical springs ; Molecular dynamics ; Temperature ; Temperature dependence ; Thermal expansion ; Thermal stability ; Wire ; Wire drawing</subject><ispartof>Journal of chemical theory and computation, 2020-04, Vol.16 (4), p.2857-2863</ispartof><rights>Copyright American Chemical Society Apr 14, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-c29f65dea405953815f6ce059a6fd57854f85d0b800552498c939d21ede5fc8b3</citedby><cites>FETCH-LOGICAL-a364t-c29f65dea405953815f6ce059a6fd57854f85d0b800552498c939d21ede5fc8b3</cites><orcidid>0000-0001-5163-2663 ; 0000-0001-6558-6186 ; 0000-0003-3613-7896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.0c00037$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.0c00037$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32196331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dohnalová, Hana</creatorcontrib><creatorcontrib>Dršata, Tomáš</creatorcontrib><creatorcontrib>Šponer, Jiří</creatorcontrib><creatorcontrib>Zacharias, Martin</creatorcontrib><creatorcontrib>Lipfert, Jan</creatorcontrib><creatorcontrib>Lankaš, Filip</creatorcontrib><title>Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Changes in the structure of double-stranded (ds) DNA with temperature affect processes in thermophilic organisms and are important for nanotechnological applications. Here we investigate temperature-dependent conformational changes of dsDNA at the scale of several helical turns and at the base pair step level, inferred from extensive all-atom molecular dynamics simulations of DNA at temperatures from 7 to 47 °C. Our results suggest that, contrary to twist, the overall bending of dsDNA without A-tracts depends only very weakly on temperature, due to the mutual compensation of directional local bends. Investigating DNA length as a function of temperature, we find that the sum of distances between base pair centers (the wire length) exhibits a large expansion coefficient of ∼2 × 10–4 °C–1, similar to values reported for thermoplastic materials. However, the wire length increase with temperature is absorbed by expanding helix radius, so the length measured along the helical axis (the spring length) seems to suggest a very small negative thermal expansion coefficient. These compensatory mechanisms contribute to thermal stability of DNA structure on the biologically relevant scale of tens of base pairs and longer.</description><subject>Bending</subject><subject>Bends</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Elongated structure</subject><subject>Helical springs</subject><subject>Molecular dynamics</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal expansion</subject><subject>Thermal stability</subject><subject>Wire</subject><subject>Wire drawing</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kTFPwzAQhS0EoqWwMyFLLAyk2HGcxmylLRSpwECZI9c5l1SJXexk6L_HpS0DEtOddN97d7qH0CUlfUpieieV769Uo_pEEULY4Ah1KU9EJNI4Pf7tadZBZ96vAsGSmJ2iDoupSBmjXVSObL0G42Vj3Qa_gPqUpvS1x6XBcwgjJ5vWAR5DoAowCrDVePw6xGPbLirAU6hKJSv83rhWbdF7_BDI0iyxNAWeVNYsZVNac45OtKw8XOxrD308TuajaTR7e3oeDWeRZGnSRCoWOuUFyIRwwVlGuU4VhF6muuCDjCc64wVZZIRwHiciU4KJIqZQANcqW7Aeutn5rp39asE3eV16BVUlDdjW53HwDO8J-oBe_0FXtnUmXBcoQcWAsCwJFNlRylnvHeh87cpauk1OSb6NIQ8x5NsY8n0MQXK1N24XNRS_gsPfA3C7A36kh6X_-n0DuDeS6Q</recordid><startdate>20200414</startdate><enddate>20200414</enddate><creator>Dohnalová, Hana</creator><creator>Dršata, Tomáš</creator><creator>Šponer, Jiří</creator><creator>Zacharias, Martin</creator><creator>Lipfert, Jan</creator><creator>Lankaš, Filip</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5163-2663</orcidid><orcidid>https://orcid.org/0000-0001-6558-6186</orcidid><orcidid>https://orcid.org/0000-0003-3613-7896</orcidid></search><sort><creationdate>20200414</creationdate><title>Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation</title><author>Dohnalová, Hana ; Dršata, Tomáš ; Šponer, Jiří ; Zacharias, Martin ; Lipfert, Jan ; Lankaš, Filip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-c29f65dea405953815f6ce059a6fd57854f85d0b800552498c939d21ede5fc8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bending</topic><topic>Bends</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Elongated structure</topic><topic>Helical springs</topic><topic>Molecular dynamics</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal expansion</topic><topic>Thermal stability</topic><topic>Wire</topic><topic>Wire drawing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dohnalová, Hana</creatorcontrib><creatorcontrib>Dršata, Tomáš</creatorcontrib><creatorcontrib>Šponer, Jiří</creatorcontrib><creatorcontrib>Zacharias, Martin</creatorcontrib><creatorcontrib>Lipfert, Jan</creatorcontrib><creatorcontrib>Lankaš, Filip</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dohnalová, Hana</au><au>Dršata, Tomáš</au><au>Šponer, Jiří</au><au>Zacharias, Martin</au><au>Lipfert, Jan</au><au>Lankaš, Filip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2020-04-14</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>2857</spage><epage>2863</epage><pages>2857-2863</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Changes in the structure of double-stranded (ds) DNA with temperature affect processes in thermophilic organisms and are important for nanotechnological applications. Here we investigate temperature-dependent conformational changes of dsDNA at the scale of several helical turns and at the base pair step level, inferred from extensive all-atom molecular dynamics simulations of DNA at temperatures from 7 to 47 °C. Our results suggest that, contrary to twist, the overall bending of dsDNA without A-tracts depends only very weakly on temperature, due to the mutual compensation of directional local bends. Investigating DNA length as a function of temperature, we find that the sum of distances between base pair centers (the wire length) exhibits a large expansion coefficient of ∼2 × 10–4 °C–1, similar to values reported for thermoplastic materials. However, the wire length increase with temperature is absorbed by expanding helix radius, so the length measured along the helical axis (the spring length) seems to suggest a very small negative thermal expansion coefficient. These compensatory mechanisms contribute to thermal stability of DNA structure on the biologically relevant scale of tens of base pairs and longer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32196331</pmid><doi>10.1021/acs.jctc.0c00037</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5163-2663</orcidid><orcidid>https://orcid.org/0000-0001-6558-6186</orcidid><orcidid>https://orcid.org/0000-0003-3613-7896</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2020-04, Vol.16 (4), p.2857-2863 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_2381626800 |
source | American Chemical Society Journals |
subjects | Bending Bends Deoxyribonucleic acid DNA Elongated structure Helical springs Molecular dynamics Temperature Temperature dependence Thermal expansion Thermal stability Wire Wire drawing |
title | Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensatory%20Mechanisms%20in%20Temperature%20Dependence%20of%20DNA%20Double%20Helical%20Structure:%20Bending%20and%20Elongation&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Dohnalova%CC%81,%20Hana&rft.date=2020-04-14&rft.volume=16&rft.issue=4&rft.spage=2857&rft.epage=2863&rft.pages=2857-2863&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.0c00037&rft_dat=%3Cproquest_cross%3E2391970384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391970384&rft_id=info:pmid/32196331&rfr_iscdi=true |