Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation

Changes in the structure of double-stranded (ds) DNA with temperature affect processes in thermophilic organisms and are important for nanotechnological applications. Here we investigate temperature-dependent conformational changes of dsDNA at the scale of several helical turns and at the base pair...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2020-04, Vol.16 (4), p.2857-2863
Hauptverfasser: Dohnalová, Hana, Dršata, Tomáš, Šponer, Jiří, Zacharias, Martin, Lipfert, Jan, Lankaš, Filip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2863
container_issue 4
container_start_page 2857
container_title Journal of chemical theory and computation
container_volume 16
creator Dohnalová, Hana
Dršata, Tomáš
Šponer, Jiří
Zacharias, Martin
Lipfert, Jan
Lankaš, Filip
description Changes in the structure of double-stranded (ds) DNA with temperature affect processes in thermophilic organisms and are important for nanotechnological applications. Here we investigate temperature-dependent conformational changes of dsDNA at the scale of several helical turns and at the base pair step level, inferred from extensive all-atom molecular dynamics simulations of DNA at temperatures from 7 to 47 °C. Our results suggest that, contrary to twist, the overall bending of dsDNA without A-tracts depends only very weakly on temperature, due to the mutual compensation of directional local bends. Investigating DNA length as a function of temperature, we find that the sum of distances between base pair centers (the wire length) exhibits a large expansion coefficient of ∼2 × 10–4 °C–1, similar to values reported for thermoplastic materials. However, the wire length increase with temperature is absorbed by expanding helix radius, so the length measured along the helical axis (the spring length) seems to suggest a very small negative thermal expansion coefficient. These compensatory mechanisms contribute to thermal stability of DNA structure on the biologically relevant scale of tens of base pairs and longer.
doi_str_mv 10.1021/acs.jctc.0c00037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2381626800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391970384</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-c29f65dea405953815f6ce059a6fd57854f85d0b800552498c939d21ede5fc8b3</originalsourceid><addsrcrecordid>eNp1kTFPwzAQhS0EoqWwMyFLLAyk2HGcxmylLRSpwECZI9c5l1SJXexk6L_HpS0DEtOddN97d7qH0CUlfUpieieV769Uo_pEEULY4Ah1KU9EJNI4Pf7tadZBZ96vAsGSmJ2iDoupSBmjXVSObL0G42Vj3Qa_gPqUpvS1x6XBcwgjJ5vWAR5DoAowCrDVePw6xGPbLirAU6hKJSv83rhWbdF7_BDI0iyxNAWeVNYsZVNac45OtKw8XOxrD308TuajaTR7e3oeDWeRZGnSRCoWOuUFyIRwwVlGuU4VhF6muuCDjCc64wVZZIRwHiciU4KJIqZQANcqW7Aeutn5rp39asE3eV16BVUlDdjW53HwDO8J-oBe_0FXtnUmXBcoQcWAsCwJFNlRylnvHeh87cpauk1OSb6NIQ8x5NsY8n0MQXK1N24XNRS_gsPfA3C7A36kh6X_-n0DuDeS6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391970384</pqid></control><display><type>article</type><title>Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation</title><source>American Chemical Society Journals</source><creator>Dohnalová, Hana ; Dršata, Tomáš ; Šponer, Jiří ; Zacharias, Martin ; Lipfert, Jan ; Lankaš, Filip</creator><creatorcontrib>Dohnalová, Hana ; Dršata, Tomáš ; Šponer, Jiří ; Zacharias, Martin ; Lipfert, Jan ; Lankaš, Filip</creatorcontrib><description>Changes in the structure of double-stranded (ds) DNA with temperature affect processes in thermophilic organisms and are important for nanotechnological applications. Here we investigate temperature-dependent conformational changes of dsDNA at the scale of several helical turns and at the base pair step level, inferred from extensive all-atom molecular dynamics simulations of DNA at temperatures from 7 to 47 °C. Our results suggest that, contrary to twist, the overall bending of dsDNA without A-tracts depends only very weakly on temperature, due to the mutual compensation of directional local bends. Investigating DNA length as a function of temperature, we find that the sum of distances between base pair centers (the wire length) exhibits a large expansion coefficient of ∼2 × 10–4 °C–1, similar to values reported for thermoplastic materials. However, the wire length increase with temperature is absorbed by expanding helix radius, so the length measured along the helical axis (the spring length) seems to suggest a very small negative thermal expansion coefficient. These compensatory mechanisms contribute to thermal stability of DNA structure on the biologically relevant scale of tens of base pairs and longer.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.0c00037</identifier><identifier>PMID: 32196331</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bending ; Bends ; Deoxyribonucleic acid ; DNA ; Elongated structure ; Helical springs ; Molecular dynamics ; Temperature ; Temperature dependence ; Thermal expansion ; Thermal stability ; Wire ; Wire drawing</subject><ispartof>Journal of chemical theory and computation, 2020-04, Vol.16 (4), p.2857-2863</ispartof><rights>Copyright American Chemical Society Apr 14, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-c29f65dea405953815f6ce059a6fd57854f85d0b800552498c939d21ede5fc8b3</citedby><cites>FETCH-LOGICAL-a364t-c29f65dea405953815f6ce059a6fd57854f85d0b800552498c939d21ede5fc8b3</cites><orcidid>0000-0001-5163-2663 ; 0000-0001-6558-6186 ; 0000-0003-3613-7896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.0c00037$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.0c00037$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32196331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dohnalová, Hana</creatorcontrib><creatorcontrib>Dršata, Tomáš</creatorcontrib><creatorcontrib>Šponer, Jiří</creatorcontrib><creatorcontrib>Zacharias, Martin</creatorcontrib><creatorcontrib>Lipfert, Jan</creatorcontrib><creatorcontrib>Lankaš, Filip</creatorcontrib><title>Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Changes in the structure of double-stranded (ds) DNA with temperature affect processes in thermophilic organisms and are important for nanotechnological applications. Here we investigate temperature-dependent conformational changes of dsDNA at the scale of several helical turns and at the base pair step level, inferred from extensive all-atom molecular dynamics simulations of DNA at temperatures from 7 to 47 °C. Our results suggest that, contrary to twist, the overall bending of dsDNA without A-tracts depends only very weakly on temperature, due to the mutual compensation of directional local bends. Investigating DNA length as a function of temperature, we find that the sum of distances between base pair centers (the wire length) exhibits a large expansion coefficient of ∼2 × 10–4 °C–1, similar to values reported for thermoplastic materials. However, the wire length increase with temperature is absorbed by expanding helix radius, so the length measured along the helical axis (the spring length) seems to suggest a very small negative thermal expansion coefficient. These compensatory mechanisms contribute to thermal stability of DNA structure on the biologically relevant scale of tens of base pairs and longer.</description><subject>Bending</subject><subject>Bends</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Elongated structure</subject><subject>Helical springs</subject><subject>Molecular dynamics</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal expansion</subject><subject>Thermal stability</subject><subject>Wire</subject><subject>Wire drawing</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kTFPwzAQhS0EoqWwMyFLLAyk2HGcxmylLRSpwECZI9c5l1SJXexk6L_HpS0DEtOddN97d7qH0CUlfUpieieV769Uo_pEEULY4Ah1KU9EJNI4Pf7tadZBZ96vAsGSmJ2iDoupSBmjXVSObL0G42Vj3Qa_gPqUpvS1x6XBcwgjJ5vWAR5DoAowCrDVePw6xGPbLirAU6hKJSv83rhWbdF7_BDI0iyxNAWeVNYsZVNac45OtKw8XOxrD308TuajaTR7e3oeDWeRZGnSRCoWOuUFyIRwwVlGuU4VhF6muuCDjCc64wVZZIRwHiciU4KJIqZQANcqW7Aeutn5rp39asE3eV16BVUlDdjW53HwDO8J-oBe_0FXtnUmXBcoQcWAsCwJFNlRylnvHeh87cpauk1OSb6NIQ8x5NsY8n0MQXK1N24XNRS_gsPfA3C7A36kh6X_-n0DuDeS6Q</recordid><startdate>20200414</startdate><enddate>20200414</enddate><creator>Dohnalová, Hana</creator><creator>Dršata, Tomáš</creator><creator>Šponer, Jiří</creator><creator>Zacharias, Martin</creator><creator>Lipfert, Jan</creator><creator>Lankaš, Filip</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5163-2663</orcidid><orcidid>https://orcid.org/0000-0001-6558-6186</orcidid><orcidid>https://orcid.org/0000-0003-3613-7896</orcidid></search><sort><creationdate>20200414</creationdate><title>Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation</title><author>Dohnalová, Hana ; Dršata, Tomáš ; Šponer, Jiří ; Zacharias, Martin ; Lipfert, Jan ; Lankaš, Filip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-c29f65dea405953815f6ce059a6fd57854f85d0b800552498c939d21ede5fc8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bending</topic><topic>Bends</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Elongated structure</topic><topic>Helical springs</topic><topic>Molecular dynamics</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal expansion</topic><topic>Thermal stability</topic><topic>Wire</topic><topic>Wire drawing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dohnalová, Hana</creatorcontrib><creatorcontrib>Dršata, Tomáš</creatorcontrib><creatorcontrib>Šponer, Jiří</creatorcontrib><creatorcontrib>Zacharias, Martin</creatorcontrib><creatorcontrib>Lipfert, Jan</creatorcontrib><creatorcontrib>Lankaš, Filip</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dohnalová, Hana</au><au>Dršata, Tomáš</au><au>Šponer, Jiří</au><au>Zacharias, Martin</au><au>Lipfert, Jan</au><au>Lankaš, Filip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2020-04-14</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>2857</spage><epage>2863</epage><pages>2857-2863</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Changes in the structure of double-stranded (ds) DNA with temperature affect processes in thermophilic organisms and are important for nanotechnological applications. Here we investigate temperature-dependent conformational changes of dsDNA at the scale of several helical turns and at the base pair step level, inferred from extensive all-atom molecular dynamics simulations of DNA at temperatures from 7 to 47 °C. Our results suggest that, contrary to twist, the overall bending of dsDNA without A-tracts depends only very weakly on temperature, due to the mutual compensation of directional local bends. Investigating DNA length as a function of temperature, we find that the sum of distances between base pair centers (the wire length) exhibits a large expansion coefficient of ∼2 × 10–4 °C–1, similar to values reported for thermoplastic materials. However, the wire length increase with temperature is absorbed by expanding helix radius, so the length measured along the helical axis (the spring length) seems to suggest a very small negative thermal expansion coefficient. These compensatory mechanisms contribute to thermal stability of DNA structure on the biologically relevant scale of tens of base pairs and longer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32196331</pmid><doi>10.1021/acs.jctc.0c00037</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5163-2663</orcidid><orcidid>https://orcid.org/0000-0001-6558-6186</orcidid><orcidid>https://orcid.org/0000-0003-3613-7896</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2020-04, Vol.16 (4), p.2857-2863
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2381626800
source American Chemical Society Journals
subjects Bending
Bends
Deoxyribonucleic acid
DNA
Elongated structure
Helical springs
Molecular dynamics
Temperature
Temperature dependence
Thermal expansion
Thermal stability
Wire
Wire drawing
title Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensatory%20Mechanisms%20in%20Temperature%20Dependence%20of%20DNA%20Double%20Helical%20Structure:%20Bending%20and%20Elongation&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Dohnalova%CC%81,%20Hana&rft.date=2020-04-14&rft.volume=16&rft.issue=4&rft.spage=2857&rft.epage=2863&rft.pages=2857-2863&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.0c00037&rft_dat=%3Cproquest_cross%3E2391970384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391970384&rft_id=info:pmid/32196331&rfr_iscdi=true