Low-contrast X-ray enhancement using a fuzzy gamma reasoning model

X-ray images play an important role in providing physicians with satisfactory information correlated to fractures and diseases; unfortunately, most of these images suffer from low contrast and poor quality. Thus, enhancement of the image will increase the accuracy of correct information on pathologi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2020-06, Vol.58 (6), p.1177-1197
Hauptverfasser: Mouzai, Meriem, Tarabet, Chahrazed, Mustapha, Aouache
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1197
container_issue 6
container_start_page 1177
container_title Medical & biological engineering & computing
container_volume 58
creator Mouzai, Meriem
Tarabet, Chahrazed
Mustapha, Aouache
description X-ray images play an important role in providing physicians with satisfactory information correlated to fractures and diseases; unfortunately, most of these images suffer from low contrast and poor quality. Thus, enhancement of the image will increase the accuracy of correct information on pathologies for an autonomous diagnosis system. In this paper, a new approach for low-contrast X-ray image enhancement based on brightness adjustment using a fuzzy gamma reasoning model (FGRM) is proposed. To achieve this, three phases are considered: pre-processing, Fuzzy model for adaptive gamma correction (GC), and quality assessment based on blind reference. The proposed approach’s accuracy is examined through two different blind reference approaches based on statistical measures (BR-SM) and dispersion-location (BR-DL) descriptors, supported by resulting images. Experimental results of the proposed FGRM approach on three databases (cervical, lumbar, and hand radiographs) yield favorable results in terms of contrast adjustment and providing satisfactory quality images. Graphical Abstract Graphical abstract of the proposed enhancement method
doi_str_mv 10.1007/s11517-020-02122-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2381621685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400255049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-674485c2d0fbfbe283abf70c5103f180a1877a5e7af3a0dda99e216296aeaaa03</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AQ8S8OIlurMf2eSoxS8oeFHwtkySTW1pNnU3QdJf79ZUBQ8eloGdZ94ZHkJOgV4CperKA0hQMWU0PGAs7vfIGJSAmAoh9smYgggtgHREjrxf0kBJJg7JiDPIeJrwMbmZNR9x0djWoW-j19hhHxn7hrYwtbFt1PmFnUcYVd1m00dzrGuMnEHf2O1_3ZRmdUwOKlx5c7KrE_Jyd_s8fYhnT_eP0-tZXHAl2zhRQqSyYCWt8io3LOWYV4oWEiivIKUIqVIojcKKIy1LzDLDIGFZggYRKZ-QiyF37Zr3zvhW1wtfmNUKrWk6rxlPAw5JKgN6_gddNp2z4TrNRNAgJRVZoNhAFa7x3plKr92iRtdroHprWA-GdTCsvwzrPgyd7aK7vDblz8i30gDwAfChZefG_e7-J_YTvlWF4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400255049</pqid></control><display><type>article</type><title>Low-contrast X-ray enhancement using a fuzzy gamma reasoning model</title><source>MEDLINE</source><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mouzai, Meriem ; Tarabet, Chahrazed ; Mustapha, Aouache</creator><creatorcontrib>Mouzai, Meriem ; Tarabet, Chahrazed ; Mustapha, Aouache</creatorcontrib><description>X-ray images play an important role in providing physicians with satisfactory information correlated to fractures and diseases; unfortunately, most of these images suffer from low contrast and poor quality. Thus, enhancement of the image will increase the accuracy of correct information on pathologies for an autonomous diagnosis system. In this paper, a new approach for low-contrast X-ray image enhancement based on brightness adjustment using a fuzzy gamma reasoning model (FGRM) is proposed. To achieve this, three phases are considered: pre-processing, Fuzzy model for adaptive gamma correction (GC), and quality assessment based on blind reference. The proposed approach’s accuracy is examined through two different blind reference approaches based on statistical measures (BR-SM) and dispersion-location (BR-DL) descriptors, supported by resulting images. Experimental results of the proposed FGRM approach on three databases (cervical, lumbar, and hand radiographs) yield favorable results in terms of contrast adjustment and providing satisfactory quality images. Graphical Abstract Graphical abstract of the proposed enhancement method</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-020-02122-y</identifier><identifier>PMID: 32193863</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adolescent ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Child ; Child, Preschool ; Computer Applications ; Databases, Factual ; Female ; Fractures ; Fuzzy Logic ; Hand - diagnostic imaging ; Human Physiology ; Humans ; Image contrast ; Image enhancement ; Image Enhancement - methods ; Image quality ; Imaging ; Infant ; Infant, Newborn ; Male ; Medical imaging ; Original Article ; Physicians ; Quality assessment ; Quality control ; Radiographs ; Radiography ; Radiography - methods ; Radiography - statistics &amp; numerical data ; Radiology ; Reasoning ; Spine - diagnostic imaging ; X-Rays</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2020-06, Vol.58 (6), p.1177-1197</ispartof><rights>International Federation for Medical and Biological Engineering 2020</rights><rights>International Federation for Medical and Biological Engineering 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-674485c2d0fbfbe283abf70c5103f180a1877a5e7af3a0dda99e216296aeaaa03</citedby><cites>FETCH-LOGICAL-c375t-674485c2d0fbfbe283abf70c5103f180a1877a5e7af3a0dda99e216296aeaaa03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-020-02122-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-020-02122-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32193863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mouzai, Meriem</creatorcontrib><creatorcontrib>Tarabet, Chahrazed</creatorcontrib><creatorcontrib>Mustapha, Aouache</creatorcontrib><title>Low-contrast X-ray enhancement using a fuzzy gamma reasoning model</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>X-ray images play an important role in providing physicians with satisfactory information correlated to fractures and diseases; unfortunately, most of these images suffer from low contrast and poor quality. Thus, enhancement of the image will increase the accuracy of correct information on pathologies for an autonomous diagnosis system. In this paper, a new approach for low-contrast X-ray image enhancement based on brightness adjustment using a fuzzy gamma reasoning model (FGRM) is proposed. To achieve this, three phases are considered: pre-processing, Fuzzy model for adaptive gamma correction (GC), and quality assessment based on blind reference. The proposed approach’s accuracy is examined through two different blind reference approaches based on statistical measures (BR-SM) and dispersion-location (BR-DL) descriptors, supported by resulting images. Experimental results of the proposed FGRM approach on three databases (cervical, lumbar, and hand radiographs) yield favorable results in terms of contrast adjustment and providing satisfactory quality images. Graphical Abstract Graphical abstract of the proposed enhancement method</description><subject>Adolescent</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Computer Applications</subject><subject>Databases, Factual</subject><subject>Female</subject><subject>Fractures</subject><subject>Fuzzy Logic</subject><subject>Hand - diagnostic imaging</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image Enhancement - methods</subject><subject>Image quality</subject><subject>Imaging</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Original Article</subject><subject>Physicians</subject><subject>Quality assessment</subject><subject>Quality control</subject><subject>Radiographs</subject><subject>Radiography</subject><subject>Radiography - methods</subject><subject>Radiography - statistics &amp; numerical data</subject><subject>Radiology</subject><subject>Reasoning</subject><subject>Spine - diagnostic imaging</subject><subject>X-Rays</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1Lw0AQhhdRbK3-AQ8S8OIlurMf2eSoxS8oeFHwtkySTW1pNnU3QdJf79ZUBQ8eloGdZ94ZHkJOgV4CperKA0hQMWU0PGAs7vfIGJSAmAoh9smYgggtgHREjrxf0kBJJg7JiDPIeJrwMbmZNR9x0djWoW-j19hhHxn7hrYwtbFt1PmFnUcYVd1m00dzrGuMnEHf2O1_3ZRmdUwOKlx5c7KrE_Jyd_s8fYhnT_eP0-tZXHAl2zhRQqSyYCWt8io3LOWYV4oWEiivIKUIqVIojcKKIy1LzDLDIGFZggYRKZ-QiyF37Zr3zvhW1wtfmNUKrWk6rxlPAw5JKgN6_gddNp2z4TrNRNAgJRVZoNhAFa7x3plKr92iRtdroHprWA-GdTCsvwzrPgyd7aK7vDblz8i30gDwAfChZefG_e7-J_YTvlWF4w</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mouzai, Meriem</creator><creator>Tarabet, Chahrazed</creator><creator>Mustapha, Aouache</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20200601</creationdate><title>Low-contrast X-ray enhancement using a fuzzy gamma reasoning model</title><author>Mouzai, Meriem ; Tarabet, Chahrazed ; Mustapha, Aouache</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-674485c2d0fbfbe283abf70c5103f180a1877a5e7af3a0dda99e216296aeaaa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescent</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Computer Applications</topic><topic>Databases, Factual</topic><topic>Female</topic><topic>Fractures</topic><topic>Fuzzy Logic</topic><topic>Hand - diagnostic imaging</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image Enhancement - methods</topic><topic>Image quality</topic><topic>Imaging</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Original Article</topic><topic>Physicians</topic><topic>Quality assessment</topic><topic>Quality control</topic><topic>Radiographs</topic><topic>Radiography</topic><topic>Radiography - methods</topic><topic>Radiography - statistics &amp; numerical data</topic><topic>Radiology</topic><topic>Reasoning</topic><topic>Spine - diagnostic imaging</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouzai, Meriem</creatorcontrib><creatorcontrib>Tarabet, Chahrazed</creatorcontrib><creatorcontrib>Mustapha, Aouache</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouzai, Meriem</au><au>Tarabet, Chahrazed</au><au>Mustapha, Aouache</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-contrast X-ray enhancement using a fuzzy gamma reasoning model</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>58</volume><issue>6</issue><spage>1177</spage><epage>1197</epage><pages>1177-1197</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>X-ray images play an important role in providing physicians with satisfactory information correlated to fractures and diseases; unfortunately, most of these images suffer from low contrast and poor quality. Thus, enhancement of the image will increase the accuracy of correct information on pathologies for an autonomous diagnosis system. In this paper, a new approach for low-contrast X-ray image enhancement based on brightness adjustment using a fuzzy gamma reasoning model (FGRM) is proposed. To achieve this, three phases are considered: pre-processing, Fuzzy model for adaptive gamma correction (GC), and quality assessment based on blind reference. The proposed approach’s accuracy is examined through two different blind reference approaches based on statistical measures (BR-SM) and dispersion-location (BR-DL) descriptors, supported by resulting images. Experimental results of the proposed FGRM approach on three databases (cervical, lumbar, and hand radiographs) yield favorable results in terms of contrast adjustment and providing satisfactory quality images. Graphical Abstract Graphical abstract of the proposed enhancement method</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32193863</pmid><doi>10.1007/s11517-020-02122-y</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2020-06, Vol.58 (6), p.1177-1197
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_2381621685
source MEDLINE; Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Adolescent
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Child
Child, Preschool
Computer Applications
Databases, Factual
Female
Fractures
Fuzzy Logic
Hand - diagnostic imaging
Human Physiology
Humans
Image contrast
Image enhancement
Image Enhancement - methods
Image quality
Imaging
Infant
Infant, Newborn
Male
Medical imaging
Original Article
Physicians
Quality assessment
Quality control
Radiographs
Radiography
Radiography - methods
Radiography - statistics & numerical data
Radiology
Reasoning
Spine - diagnostic imaging
X-Rays
title Low-contrast X-ray enhancement using a fuzzy gamma reasoning model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-contrast%20X-ray%20enhancement%20using%20a%20fuzzy%20gamma%20reasoning%20model&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Mouzai,%20Meriem&rft.date=2020-06-01&rft.volume=58&rft.issue=6&rft.spage=1177&rft.epage=1197&rft.pages=1177-1197&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-020-02122-y&rft_dat=%3Cproquest_cross%3E2400255049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400255049&rft_id=info:pmid/32193863&rfr_iscdi=true