Multi-Arch-Structured All-Carbon Aerogels with Superelasticity and High Fatigue Resistance as Wearable Sensors
Compressible and ultralight all-carbon materials are promising candidates for piezoresistive pressure sensors. Although several fabrication methods have been developed, the required elasticity and fatigue resistance of all-carbon materials are yet to be satisfied as a result of energy loss and struc...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-04, Vol.12 (14), p.16822-16830 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16830 |
---|---|
container_issue | 14 |
container_start_page | 16822 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Huang, Jiankun Zeng, Jingbin Liang, Baoqiang Wu, Junwei Li, Tongge Li, Qing Feng, Fan Feng, Qingwen Rood, Mark J Yan, Zifeng |
description | Compressible and ultralight all-carbon materials are promising candidates for piezoresistive pressure sensors. Although several fabrication methods have been developed, the required elasticity and fatigue resistance of all-carbon materials are yet to be satisfied as a result of energy loss and structure-derived fatigue failure. Herein, we present a two-stage solvothermal freeze-casting approach to fabricate all-carbon aerogel [modified graphene aerogel (MGA)] with a multi-arched structure, which is enabled by the in-depth solvothermal reduction of graphene oxide and unidirectional ice-crystal growth. MGA exhibits supercompressibility and superelasticity, which can resist an extreme compressive strain of 99% and maintain 93.4% height retention after 100 000 cycles at the strain of 80%. Rebound experiments reveal that MGA can rebound the ball (367 times heavier than the aerogel) in 0.02 s with a very fast recovery speed (∼615 mm s–1). Even if the mass ratio between the ball and aerogel is increased to 1306, the ball can be rebound in a relatively short time (0.04 s) with a fast recovery speed (∼535 mm s–1). As a result of its excellent mechanical robustness and electrical conductivity, MGA presents a stable stress–current response (10 000 cycles), tunable linear sensitivity (9.13–7.29 kPa–1), and low power consumption (4 mW). The MGA-based wearable pressure sensor can monitor human physiological signals, such as pulses, sound vibrations, and muscular movements, demonstrating its potential practicability as a wearable device. |
doi_str_mv | 10.1021/acsami.0c01794 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2379025518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379025518</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-f84126e8d611aaccab90646150d635d04d8ce5450d7c94cae88768fd6b9663bb3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoVqtXj5KjCFuT3WyaPZZirVARrOJxmc1O25R0t-YD6b93pbU3TzMDz_vCPITccDbgLOUPoD1szIBpxoeFOCEXvBAiUWmenh53IXrk0vs1YzJLWX5OelnKlVQ5vyDNS7TBJCOnV8k8uKhDdFjTkbXJGFzVNnSErl2i9fTbhBWdxy06tOCD0SbsKDQ1nZrlik4gmGVE-obe-ACNRgqefiI4qCzSOTa-df6KnC3Aerw-zD75mDy-j6fJ7PXpeTyaJZBlLCQLJXgqUdWScwCtoSqYFJLnrJZZXjNRK4256M6hLoQGVGoo1aKWVSFlVlVZn9zte7eu_YroQ7kxXqO10GAbfZlmw4Klec5Vhw72qHat9w4X5daZDbhdyVn567jcOy4PjrvA7aE7Vhusj_if1A643wNdsFy30TXdq_-1_QATOYeK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379025518</pqid></control><display><type>article</type><title>Multi-Arch-Structured All-Carbon Aerogels with Superelasticity and High Fatigue Resistance as Wearable Sensors</title><source>ACS Publications</source><creator>Huang, Jiankun ; Zeng, Jingbin ; Liang, Baoqiang ; Wu, Junwei ; Li, Tongge ; Li, Qing ; Feng, Fan ; Feng, Qingwen ; Rood, Mark J ; Yan, Zifeng</creator><creatorcontrib>Huang, Jiankun ; Zeng, Jingbin ; Liang, Baoqiang ; Wu, Junwei ; Li, Tongge ; Li, Qing ; Feng, Fan ; Feng, Qingwen ; Rood, Mark J ; Yan, Zifeng</creatorcontrib><description>Compressible and ultralight all-carbon materials are promising candidates for piezoresistive pressure sensors. Although several fabrication methods have been developed, the required elasticity and fatigue resistance of all-carbon materials are yet to be satisfied as a result of energy loss and structure-derived fatigue failure. Herein, we present a two-stage solvothermal freeze-casting approach to fabricate all-carbon aerogel [modified graphene aerogel (MGA)] with a multi-arched structure, which is enabled by the in-depth solvothermal reduction of graphene oxide and unidirectional ice-crystal growth. MGA exhibits supercompressibility and superelasticity, which can resist an extreme compressive strain of 99% and maintain 93.4% height retention after 100 000 cycles at the strain of 80%. Rebound experiments reveal that MGA can rebound the ball (367 times heavier than the aerogel) in 0.02 s with a very fast recovery speed (∼615 mm s–1). Even if the mass ratio between the ball and aerogel is increased to 1306, the ball can be rebound in a relatively short time (0.04 s) with a fast recovery speed (∼535 mm s–1). As a result of its excellent mechanical robustness and electrical conductivity, MGA presents a stable stress–current response (10 000 cycles), tunable linear sensitivity (9.13–7.29 kPa–1), and low power consumption (4 mW). The MGA-based wearable pressure sensor can monitor human physiological signals, such as pulses, sound vibrations, and muscular movements, demonstrating its potential practicability as a wearable device.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c01794</identifier><identifier>PMID: 32186851</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2020-04, Vol.12 (14), p.16822-16830</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-f84126e8d611aaccab90646150d635d04d8ce5450d7c94cae88768fd6b9663bb3</citedby><cites>FETCH-LOGICAL-a330t-f84126e8d611aaccab90646150d635d04d8ce5450d7c94cae88768fd6b9663bb3</cites><orcidid>0000-0002-4730-2511 ; 0000-0002-9215-3842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c01794$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c01794$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32186851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jiankun</creatorcontrib><creatorcontrib>Zeng, Jingbin</creatorcontrib><creatorcontrib>Liang, Baoqiang</creatorcontrib><creatorcontrib>Wu, Junwei</creatorcontrib><creatorcontrib>Li, Tongge</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Feng, Fan</creatorcontrib><creatorcontrib>Feng, Qingwen</creatorcontrib><creatorcontrib>Rood, Mark J</creatorcontrib><creatorcontrib>Yan, Zifeng</creatorcontrib><title>Multi-Arch-Structured All-Carbon Aerogels with Superelasticity and High Fatigue Resistance as Wearable Sensors</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Compressible and ultralight all-carbon materials are promising candidates for piezoresistive pressure sensors. Although several fabrication methods have been developed, the required elasticity and fatigue resistance of all-carbon materials are yet to be satisfied as a result of energy loss and structure-derived fatigue failure. Herein, we present a two-stage solvothermal freeze-casting approach to fabricate all-carbon aerogel [modified graphene aerogel (MGA)] with a multi-arched structure, which is enabled by the in-depth solvothermal reduction of graphene oxide and unidirectional ice-crystal growth. MGA exhibits supercompressibility and superelasticity, which can resist an extreme compressive strain of 99% and maintain 93.4% height retention after 100 000 cycles at the strain of 80%. Rebound experiments reveal that MGA can rebound the ball (367 times heavier than the aerogel) in 0.02 s with a very fast recovery speed (∼615 mm s–1). Even if the mass ratio between the ball and aerogel is increased to 1306, the ball can be rebound in a relatively short time (0.04 s) with a fast recovery speed (∼535 mm s–1). As a result of its excellent mechanical robustness and electrical conductivity, MGA presents a stable stress–current response (10 000 cycles), tunable linear sensitivity (9.13–7.29 kPa–1), and low power consumption (4 mW). The MGA-based wearable pressure sensor can monitor human physiological signals, such as pulses, sound vibrations, and muscular movements, demonstrating its potential practicability as a wearable device.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoVqtXj5KjCFuT3WyaPZZirVARrOJxmc1O25R0t-YD6b93pbU3TzMDz_vCPITccDbgLOUPoD1szIBpxoeFOCEXvBAiUWmenh53IXrk0vs1YzJLWX5OelnKlVQ5vyDNS7TBJCOnV8k8uKhDdFjTkbXJGFzVNnSErl2i9fTbhBWdxy06tOCD0SbsKDQ1nZrlik4gmGVE-obe-ACNRgqefiI4qCzSOTa-df6KnC3Aerw-zD75mDy-j6fJ7PXpeTyaJZBlLCQLJXgqUdWScwCtoSqYFJLnrJZZXjNRK4256M6hLoQGVGoo1aKWVSFlVlVZn9zte7eu_YroQ7kxXqO10GAbfZlmw4Klec5Vhw72qHat9w4X5daZDbhdyVn567jcOy4PjrvA7aE7Vhusj_if1A643wNdsFy30TXdq_-1_QATOYeK</recordid><startdate>20200408</startdate><enddate>20200408</enddate><creator>Huang, Jiankun</creator><creator>Zeng, Jingbin</creator><creator>Liang, Baoqiang</creator><creator>Wu, Junwei</creator><creator>Li, Tongge</creator><creator>Li, Qing</creator><creator>Feng, Fan</creator><creator>Feng, Qingwen</creator><creator>Rood, Mark J</creator><creator>Yan, Zifeng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4730-2511</orcidid><orcidid>https://orcid.org/0000-0002-9215-3842</orcidid></search><sort><creationdate>20200408</creationdate><title>Multi-Arch-Structured All-Carbon Aerogels with Superelasticity and High Fatigue Resistance as Wearable Sensors</title><author>Huang, Jiankun ; Zeng, Jingbin ; Liang, Baoqiang ; Wu, Junwei ; Li, Tongge ; Li, Qing ; Feng, Fan ; Feng, Qingwen ; Rood, Mark J ; Yan, Zifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-f84126e8d611aaccab90646150d635d04d8ce5450d7c94cae88768fd6b9663bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jiankun</creatorcontrib><creatorcontrib>Zeng, Jingbin</creatorcontrib><creatorcontrib>Liang, Baoqiang</creatorcontrib><creatorcontrib>Wu, Junwei</creatorcontrib><creatorcontrib>Li, Tongge</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Feng, Fan</creatorcontrib><creatorcontrib>Feng, Qingwen</creatorcontrib><creatorcontrib>Rood, Mark J</creatorcontrib><creatorcontrib>Yan, Zifeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jiankun</au><au>Zeng, Jingbin</au><au>Liang, Baoqiang</au><au>Wu, Junwei</au><au>Li, Tongge</au><au>Li, Qing</au><au>Feng, Fan</au><au>Feng, Qingwen</au><au>Rood, Mark J</au><au>Yan, Zifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Arch-Structured All-Carbon Aerogels with Superelasticity and High Fatigue Resistance as Wearable Sensors</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-04-08</date><risdate>2020</risdate><volume>12</volume><issue>14</issue><spage>16822</spage><epage>16830</epage><pages>16822-16830</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Compressible and ultralight all-carbon materials are promising candidates for piezoresistive pressure sensors. Although several fabrication methods have been developed, the required elasticity and fatigue resistance of all-carbon materials are yet to be satisfied as a result of energy loss and structure-derived fatigue failure. Herein, we present a two-stage solvothermal freeze-casting approach to fabricate all-carbon aerogel [modified graphene aerogel (MGA)] with a multi-arched structure, which is enabled by the in-depth solvothermal reduction of graphene oxide and unidirectional ice-crystal growth. MGA exhibits supercompressibility and superelasticity, which can resist an extreme compressive strain of 99% and maintain 93.4% height retention after 100 000 cycles at the strain of 80%. Rebound experiments reveal that MGA can rebound the ball (367 times heavier than the aerogel) in 0.02 s with a very fast recovery speed (∼615 mm s–1). Even if the mass ratio between the ball and aerogel is increased to 1306, the ball can be rebound in a relatively short time (0.04 s) with a fast recovery speed (∼535 mm s–1). As a result of its excellent mechanical robustness and electrical conductivity, MGA presents a stable stress–current response (10 000 cycles), tunable linear sensitivity (9.13–7.29 kPa–1), and low power consumption (4 mW). The MGA-based wearable pressure sensor can monitor human physiological signals, such as pulses, sound vibrations, and muscular movements, demonstrating its potential practicability as a wearable device.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32186851</pmid><doi>10.1021/acsami.0c01794</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4730-2511</orcidid><orcidid>https://orcid.org/0000-0002-9215-3842</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-04, Vol.12 (14), p.16822-16830 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2379025518 |
source | ACS Publications |
title | Multi-Arch-Structured All-Carbon Aerogels with Superelasticity and High Fatigue Resistance as Wearable Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Arch-Structured%20All-Carbon%20Aerogels%20with%20Superelasticity%20and%20High%20Fatigue%20Resistance%20as%20Wearable%20Sensors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Huang,%20Jiankun&rft.date=2020-04-08&rft.volume=12&rft.issue=14&rft.spage=16822&rft.epage=16830&rft.pages=16822-16830&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c01794&rft_dat=%3Cproquest_cross%3E2379025518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379025518&rft_id=info:pmid/32186851&rfr_iscdi=true |