Templated Growth of a Homochiral Thin Film Oxide

Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is more challenging. We demonstrate the chirality of a metal surface can be used to direct th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-04, Vol.14 (4), p.4682-4688
Hauptverfasser: Schilling, Alex C, Therrien, Andrew J, Hannagan, Ryan T, Marcinkowski, Matthew D, Kress, Paul L, Patel, Dipna A, Balema, Tedros A, Larson, Amanda M, Lucci, Felicia R, Coughlin, Benjamin P, Zhang, Renqin, Thuening, Theodore, Çınar, Volkan, McEwen, Jean-Sabin, Gellman, Andrew J, Sykes, E. Charles H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4688
container_issue 4
container_start_page 4682
container_title ACS nano
container_volume 14
creator Schilling, Alex C
Therrien, Andrew J
Hannagan, Ryan T
Marcinkowski, Matthew D
Kress, Paul L
Patel, Dipna A
Balema, Tedros A
Larson, Amanda M
Lucci, Felicia R
Coughlin, Benjamin P
Zhang, Renqin
Thuening, Theodore
Çınar, Volkan
McEwen, Jean-Sabin
Gellman, Andrew J
Sykes, E. Charles H
description Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is more challenging. We demonstrate the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide. Specifically, we study the chiral “29” copper oxide, formed by oxidizing a Cu(111) single crystal at 650 K. Surface structure spread single crystals, which expose a continuous distribution of surface orientations as a function of position on the crystal, enable us to systematically investigate the mechanism of chirality transfer between the metal and the surface oxide with high-resolution scanning tunneling microscopy. We discover that the local underlying metal facet directs the orientation and chirality of the oxide overlayer. Importantly, single homochiral domains of the “29” oxide were found in areas where the Cu step edges that templated growth were ≤20 nm apart. We use this information to select a Cu­(239 241 246) oriented single crystal and demonstrate that a “29” oxide surface can be grown in homochiral domains by templating from the subtle chirality of the underlying metal crystal. This work demonstrates how a small degree of chirality induced by slight misorientation of a metal surface (∼1 sites/20 nm2) can be amplified by oxidation to yield a homochiral oxide with a regular array of chiral oxide pores (∼75 sites/20 nm2). This offers a general approach for making chiral oxide surfaces via oxidation of an appropriately “miscut” metal surface.
doi_str_mv 10.1021/acsnano.0c00398
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2379023941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379023941</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-9abfdf59f35c223b94537002fdc481d861e510c4a0a27b68c2c4187d5d84e36b3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMobk7P3iRHQbp9SZo2PcpwmzDYpYK3kCYp62ibmbSo_97K6m6evvfwvC98D0L3BOYEKFkoHVrVujloAJaJCzQlGUsiEMn75TlzMkE3IRwAeCrS5BpNGCUiEZxOEeS2Odaqswavvfvs9tiVWOGNa5zeV17VON9XLV5VdYN3X5Wxt-iqVHWwd-OdobfVS77cRNvd-nX5vI0UY6yLMlWUpuRZybimlBVZzFkKQEujY0GMSIjlBHSsQNG0SISmOiYiNdyI2LKkYDP0eNo9evfR29DJpgra1rVqreuDpCzNgLIsJgO6OKHauxC8LeXRV43y35KA_NUkR01y1DQ0HsbxvmisOfN_Xgbg6QQMTXlwvW-HX_-d-wHbxHE1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379023941</pqid></control><display><type>article</type><title>Templated Growth of a Homochiral Thin Film Oxide</title><source>American Chemical Society Web Editions</source><creator>Schilling, Alex C ; Therrien, Andrew J ; Hannagan, Ryan T ; Marcinkowski, Matthew D ; Kress, Paul L ; Patel, Dipna A ; Balema, Tedros A ; Larson, Amanda M ; Lucci, Felicia R ; Coughlin, Benjamin P ; Zhang, Renqin ; Thuening, Theodore ; Çınar, Volkan ; McEwen, Jean-Sabin ; Gellman, Andrew J ; Sykes, E. Charles H</creator><creatorcontrib>Schilling, Alex C ; Therrien, Andrew J ; Hannagan, Ryan T ; Marcinkowski, Matthew D ; Kress, Paul L ; Patel, Dipna A ; Balema, Tedros A ; Larson, Amanda M ; Lucci, Felicia R ; Coughlin, Benjamin P ; Zhang, Renqin ; Thuening, Theodore ; Çınar, Volkan ; McEwen, Jean-Sabin ; Gellman, Andrew J ; Sykes, E. Charles H</creatorcontrib><description>Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is more challenging. We demonstrate the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide. Specifically, we study the chiral “29” copper oxide, formed by oxidizing a Cu(111) single crystal at 650 K. Surface structure spread single crystals, which expose a continuous distribution of surface orientations as a function of position on the crystal, enable us to systematically investigate the mechanism of chirality transfer between the metal and the surface oxide with high-resolution scanning tunneling microscopy. We discover that the local underlying metal facet directs the orientation and chirality of the oxide overlayer. Importantly, single homochiral domains of the “29” oxide were found in areas where the Cu step edges that templated growth were ≤20 nm apart. We use this information to select a Cu­(239 241 246) oriented single crystal and demonstrate that a “29” oxide surface can be grown in homochiral domains by templating from the subtle chirality of the underlying metal crystal. This work demonstrates how a small degree of chirality induced by slight misorientation of a metal surface (∼1 sites/20 nm2) can be amplified by oxidation to yield a homochiral oxide with a regular array of chiral oxide pores (∼75 sites/20 nm2). This offers a general approach for making chiral oxide surfaces via oxidation of an appropriately “miscut” metal surface.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c00398</identifier><identifier>PMID: 32186852</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2020-04, Vol.14 (4), p.4682-4688</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-9abfdf59f35c223b94537002fdc481d861e510c4a0a27b68c2c4187d5d84e36b3</citedby><cites>FETCH-LOGICAL-a333t-9abfdf59f35c223b94537002fdc481d861e510c4a0a27b68c2c4187d5d84e36b3</cites><orcidid>0000-0002-4489-2050 ; 0000-0003-0931-4869 ; 0000-0001-6618-7427 ; 0000-0002-0224-2084 ; 0000-0002-9908-7817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c00398$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c00398$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32186852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schilling, Alex C</creatorcontrib><creatorcontrib>Therrien, Andrew J</creatorcontrib><creatorcontrib>Hannagan, Ryan T</creatorcontrib><creatorcontrib>Marcinkowski, Matthew D</creatorcontrib><creatorcontrib>Kress, Paul L</creatorcontrib><creatorcontrib>Patel, Dipna A</creatorcontrib><creatorcontrib>Balema, Tedros A</creatorcontrib><creatorcontrib>Larson, Amanda M</creatorcontrib><creatorcontrib>Lucci, Felicia R</creatorcontrib><creatorcontrib>Coughlin, Benjamin P</creatorcontrib><creatorcontrib>Zhang, Renqin</creatorcontrib><creatorcontrib>Thuening, Theodore</creatorcontrib><creatorcontrib>Çınar, Volkan</creatorcontrib><creatorcontrib>McEwen, Jean-Sabin</creatorcontrib><creatorcontrib>Gellman, Andrew J</creatorcontrib><creatorcontrib>Sykes, E. Charles H</creatorcontrib><title>Templated Growth of a Homochiral Thin Film Oxide</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is more challenging. We demonstrate the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide. Specifically, we study the chiral “29” copper oxide, formed by oxidizing a Cu(111) single crystal at 650 K. Surface structure spread single crystals, which expose a continuous distribution of surface orientations as a function of position on the crystal, enable us to systematically investigate the mechanism of chirality transfer between the metal and the surface oxide with high-resolution scanning tunneling microscopy. We discover that the local underlying metal facet directs the orientation and chirality of the oxide overlayer. Importantly, single homochiral domains of the “29” oxide were found in areas where the Cu step edges that templated growth were ≤20 nm apart. We use this information to select a Cu­(239 241 246) oriented single crystal and demonstrate that a “29” oxide surface can be grown in homochiral domains by templating from the subtle chirality of the underlying metal crystal. This work demonstrates how a small degree of chirality induced by slight misorientation of a metal surface (∼1 sites/20 nm2) can be amplified by oxidation to yield a homochiral oxide with a regular array of chiral oxide pores (∼75 sites/20 nm2). This offers a general approach for making chiral oxide surfaces via oxidation of an appropriately “miscut” metal surface.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMobk7P3iRHQbp9SZo2PcpwmzDYpYK3kCYp62ibmbSo_97K6m6evvfwvC98D0L3BOYEKFkoHVrVujloAJaJCzQlGUsiEMn75TlzMkE3IRwAeCrS5BpNGCUiEZxOEeS2Odaqswavvfvs9tiVWOGNa5zeV17VON9XLV5VdYN3X5Wxt-iqVHWwd-OdobfVS77cRNvd-nX5vI0UY6yLMlWUpuRZybimlBVZzFkKQEujY0GMSIjlBHSsQNG0SISmOiYiNdyI2LKkYDP0eNo9evfR29DJpgra1rVqreuDpCzNgLIsJgO6OKHauxC8LeXRV43y35KA_NUkR01y1DQ0HsbxvmisOfN_Xgbg6QQMTXlwvW-HX_-d-wHbxHE1</recordid><startdate>20200428</startdate><enddate>20200428</enddate><creator>Schilling, Alex C</creator><creator>Therrien, Andrew J</creator><creator>Hannagan, Ryan T</creator><creator>Marcinkowski, Matthew D</creator><creator>Kress, Paul L</creator><creator>Patel, Dipna A</creator><creator>Balema, Tedros A</creator><creator>Larson, Amanda M</creator><creator>Lucci, Felicia R</creator><creator>Coughlin, Benjamin P</creator><creator>Zhang, Renqin</creator><creator>Thuening, Theodore</creator><creator>Çınar, Volkan</creator><creator>McEwen, Jean-Sabin</creator><creator>Gellman, Andrew J</creator><creator>Sykes, E. Charles H</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4489-2050</orcidid><orcidid>https://orcid.org/0000-0003-0931-4869</orcidid><orcidid>https://orcid.org/0000-0001-6618-7427</orcidid><orcidid>https://orcid.org/0000-0002-0224-2084</orcidid><orcidid>https://orcid.org/0000-0002-9908-7817</orcidid></search><sort><creationdate>20200428</creationdate><title>Templated Growth of a Homochiral Thin Film Oxide</title><author>Schilling, Alex C ; Therrien, Andrew J ; Hannagan, Ryan T ; Marcinkowski, Matthew D ; Kress, Paul L ; Patel, Dipna A ; Balema, Tedros A ; Larson, Amanda M ; Lucci, Felicia R ; Coughlin, Benjamin P ; Zhang, Renqin ; Thuening, Theodore ; Çınar, Volkan ; McEwen, Jean-Sabin ; Gellman, Andrew J ; Sykes, E. Charles H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-9abfdf59f35c223b94537002fdc481d861e510c4a0a27b68c2c4187d5d84e36b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schilling, Alex C</creatorcontrib><creatorcontrib>Therrien, Andrew J</creatorcontrib><creatorcontrib>Hannagan, Ryan T</creatorcontrib><creatorcontrib>Marcinkowski, Matthew D</creatorcontrib><creatorcontrib>Kress, Paul L</creatorcontrib><creatorcontrib>Patel, Dipna A</creatorcontrib><creatorcontrib>Balema, Tedros A</creatorcontrib><creatorcontrib>Larson, Amanda M</creatorcontrib><creatorcontrib>Lucci, Felicia R</creatorcontrib><creatorcontrib>Coughlin, Benjamin P</creatorcontrib><creatorcontrib>Zhang, Renqin</creatorcontrib><creatorcontrib>Thuening, Theodore</creatorcontrib><creatorcontrib>Çınar, Volkan</creatorcontrib><creatorcontrib>McEwen, Jean-Sabin</creatorcontrib><creatorcontrib>Gellman, Andrew J</creatorcontrib><creatorcontrib>Sykes, E. Charles H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schilling, Alex C</au><au>Therrien, Andrew J</au><au>Hannagan, Ryan T</au><au>Marcinkowski, Matthew D</au><au>Kress, Paul L</au><au>Patel, Dipna A</au><au>Balema, Tedros A</au><au>Larson, Amanda M</au><au>Lucci, Felicia R</au><au>Coughlin, Benjamin P</au><au>Zhang, Renqin</au><au>Thuening, Theodore</au><au>Çınar, Volkan</au><au>McEwen, Jean-Sabin</au><au>Gellman, Andrew J</au><au>Sykes, E. Charles H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Templated Growth of a Homochiral Thin Film Oxide</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-04-28</date><risdate>2020</risdate><volume>14</volume><issue>4</issue><spage>4682</spage><epage>4688</epage><pages>4682-4688</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is more challenging. We demonstrate the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide. Specifically, we study the chiral “29” copper oxide, formed by oxidizing a Cu(111) single crystal at 650 K. Surface structure spread single crystals, which expose a continuous distribution of surface orientations as a function of position on the crystal, enable us to systematically investigate the mechanism of chirality transfer between the metal and the surface oxide with high-resolution scanning tunneling microscopy. We discover that the local underlying metal facet directs the orientation and chirality of the oxide overlayer. Importantly, single homochiral domains of the “29” oxide were found in areas where the Cu step edges that templated growth were ≤20 nm apart. We use this information to select a Cu­(239 241 246) oriented single crystal and demonstrate that a “29” oxide surface can be grown in homochiral domains by templating from the subtle chirality of the underlying metal crystal. This work demonstrates how a small degree of chirality induced by slight misorientation of a metal surface (∼1 sites/20 nm2) can be amplified by oxidation to yield a homochiral oxide with a regular array of chiral oxide pores (∼75 sites/20 nm2). This offers a general approach for making chiral oxide surfaces via oxidation of an appropriately “miscut” metal surface.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32186852</pmid><doi>10.1021/acsnano.0c00398</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4489-2050</orcidid><orcidid>https://orcid.org/0000-0003-0931-4869</orcidid><orcidid>https://orcid.org/0000-0001-6618-7427</orcidid><orcidid>https://orcid.org/0000-0002-0224-2084</orcidid><orcidid>https://orcid.org/0000-0002-9908-7817</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-04, Vol.14 (4), p.4682-4688
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2379023941
source American Chemical Society Web Editions
title Templated Growth of a Homochiral Thin Film Oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Templated%20Growth%20of%20a%20Homochiral%20Thin%20Film%20Oxide&rft.jtitle=ACS%20nano&rft.au=Schilling,%20Alex%20C&rft.date=2020-04-28&rft.volume=14&rft.issue=4&rft.spage=4682&rft.epage=4688&rft.pages=4682-4688&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c00398&rft_dat=%3Cproquest_cross%3E2379023941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379023941&rft_id=info:pmid/32186852&rfr_iscdi=true