Visual genotyping of thalassemia by using pyrrolidinyl peptide nucleic acid probes immobilized on carboxymethylcellulose-modified paper and enzyme-induced pigmentation

A simple probe pair was designed for the detection of hemoglobin E (HbE) genotype, a single-point mutation that leads to abnormal red blood cells commonly found in South East Asia. The key to differentiation is the use of a conformationally constrained peptide nucleic acid (PNA) that was immobilized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2020-04, Vol.187 (4), p.238-238, Article 238
Hauptverfasser: Jirakittiwut, Nuttapon, Munkongdee, Thongperm, Wongravee, Kanet, Sripichai, Orapan, Fucharoen, Suthat, Praneenararat, Thanit, Vilaivan, Tirayut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue 4
container_start_page 238
container_title Mikrochimica acta (1966)
container_volume 187
creator Jirakittiwut, Nuttapon
Munkongdee, Thongperm
Wongravee, Kanet
Sripichai, Orapan
Fucharoen, Suthat
Praneenararat, Thanit
Vilaivan, Tirayut
description A simple probe pair was designed for the detection of hemoglobin E (HbE) genotype, a single-point mutation that leads to abnormal red blood cells commonly found in South East Asia. The key to differentiation is the use of a conformationally constrained peptide nucleic acid (PNA) that was immobilized on carboxymethylcellulose-modified paper. This was then used for target DNA binding and visualization by an enzyme-catalyzed pigmentation. The biotinylated target DNA bound to the immobilized probe was visually detected via alkaline phosphatase-linked streptavidin. This enzyme conjugate catalyzed the dephosphorylation of the substrate 5-bromo-4-chloro-3-indolyl phosphate, leading to a series of reactions that generate an intense, dark blue pigment. The test was validated with 100 DNA samples, which shows good discrimination among different genotypes (normal, HbE, and heterozygous) with 100% accuracy when optimal conditions of analysis were applied. The method does not require temperature control and can be performed at ambient temperature. This is an attractive feature for diagnosis in primary care, which accounts for a large part of affected population. Graphical abstract Schematic representation of a paper-based sensor for the detection of the gene Hemoglobin E. The interaction between an immobilized peptide nucleic acid and a DNA target leads to enzymatic pigmentation, allowing simple visual readout with up to 100% accuracy.
doi_str_mv 10.1007/s00604-020-4197-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2379021012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715058136</galeid><sourcerecordid>A715058136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-f41ed8204e436bae26f9793c0f2657a75f79f57516b7d232b0f6ebabe4c700c53</originalsourceid><addsrcrecordid>eNp1ks1u1TAQhSMEoqXwAGyQJTZsUsZ2EifLqio_UiU2wNZy7PGtK8cOdiKRvhCviaNbqEAgLyzNfGd0xj5V9ZLCOQUQbzNAB00NDOqGDqLuH1WntOFd3YLgj6tTANbVvBPspHqW8y0AFR1rnlYnnNF-oLw9rX58dXlVnhwwxGWbXTiQaMlyo7zKGSenyLiRNe_1eUspemdc2DyZcV6cQRJW7dFporQzZE5xxEzcNMXReXeHhsRAtEpj_L5NuNxsXqP3q48Z6ykaZ11BZjVjIioYguGuYLULZtV7wx0mDItaXAzPqydW-Ywv7u-z6su7q8-XH-rrT-8_Xl5c17rhw1LbhqLpGTRYnmFUyDo7iIFrsKxrhRKtFYNtRUu7URjG2Qi2w1GN2GgBoFt-Vr05zi27fFsxL3JyeTetAsY1S8bFAIwCZQV9_Rd6G9cUirtCDazlfcPbB-qgPEoXbFyS0vtQeSFoC21PeVeo839Q5ZjyBzoGtK7U_xDQo0CnmHNCK-fkJpU2SUHu4ZDHcMgSDrmHQ_ZF8-re8DpOaH4rfqWhAOwI5NIKB0wPG_1_6k-7ZseQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392538435</pqid></control><display><type>article</type><title>Visual genotyping of thalassemia by using pyrrolidinyl peptide nucleic acid probes immobilized on carboxymethylcellulose-modified paper and enzyme-induced pigmentation</title><source>Springer Nature - Complete Springer Journals</source><creator>Jirakittiwut, Nuttapon ; Munkongdee, Thongperm ; Wongravee, Kanet ; Sripichai, Orapan ; Fucharoen, Suthat ; Praneenararat, Thanit ; Vilaivan, Tirayut</creator><creatorcontrib>Jirakittiwut, Nuttapon ; Munkongdee, Thongperm ; Wongravee, Kanet ; Sripichai, Orapan ; Fucharoen, Suthat ; Praneenararat, Thanit ; Vilaivan, Tirayut</creatorcontrib><description>A simple probe pair was designed for the detection of hemoglobin E (HbE) genotype, a single-point mutation that leads to abnormal red blood cells commonly found in South East Asia. The key to differentiation is the use of a conformationally constrained peptide nucleic acid (PNA) that was immobilized on carboxymethylcellulose-modified paper. This was then used for target DNA binding and visualization by an enzyme-catalyzed pigmentation. The biotinylated target DNA bound to the immobilized probe was visually detected via alkaline phosphatase-linked streptavidin. This enzyme conjugate catalyzed the dephosphorylation of the substrate 5-bromo-4-chloro-3-indolyl phosphate, leading to a series of reactions that generate an intense, dark blue pigment. The test was validated with 100 DNA samples, which shows good discrimination among different genotypes (normal, HbE, and heterozygous) with 100% accuracy when optimal conditions of analysis were applied. The method does not require temperature control and can be performed at ambient temperature. This is an attractive feature for diagnosis in primary care, which accounts for a large part of affected population. Graphical abstract Schematic representation of a paper-based sensor for the detection of the gene Hemoglobin E. The interaction between an immobilized peptide nucleic acid and a DNA target leads to enzymatic pigmentation, allowing simple visual readout with up to 100% accuracy.</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-020-4197-8</identifier><identifier>PMID: 32189135</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Alkaline phosphatase ; Ambient temperature ; Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Deoxyribonucleic acid ; DNA ; Enzymes ; Erythrocytes ; Gene mutations ; Genetic testing ; Hemoglobin ; Microengineering ; Mutation ; Nanochemistry ; Nanotechnology ; Nucleic acids ; Original Paper ; Peptides ; Phosphatases ; Phosphates ; Substrates ; Temperature control</subject><ispartof>Mikrochimica acta (1966), 2020-04, Vol.187 (4), p.238-238, Article 238</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-f41ed8204e436bae26f9793c0f2657a75f79f57516b7d232b0f6ebabe4c700c53</citedby><cites>FETCH-LOGICAL-c439t-f41ed8204e436bae26f9793c0f2657a75f79f57516b7d232b0f6ebabe4c700c53</cites><orcidid>0000-0001-9165-2642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-020-4197-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-020-4197-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32189135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jirakittiwut, Nuttapon</creatorcontrib><creatorcontrib>Munkongdee, Thongperm</creatorcontrib><creatorcontrib>Wongravee, Kanet</creatorcontrib><creatorcontrib>Sripichai, Orapan</creatorcontrib><creatorcontrib>Fucharoen, Suthat</creatorcontrib><creatorcontrib>Praneenararat, Thanit</creatorcontrib><creatorcontrib>Vilaivan, Tirayut</creatorcontrib><title>Visual genotyping of thalassemia by using pyrrolidinyl peptide nucleic acid probes immobilized on carboxymethylcellulose-modified paper and enzyme-induced pigmentation</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><addtitle>Mikrochim Acta</addtitle><description>A simple probe pair was designed for the detection of hemoglobin E (HbE) genotype, a single-point mutation that leads to abnormal red blood cells commonly found in South East Asia. The key to differentiation is the use of a conformationally constrained peptide nucleic acid (PNA) that was immobilized on carboxymethylcellulose-modified paper. This was then used for target DNA binding and visualization by an enzyme-catalyzed pigmentation. The biotinylated target DNA bound to the immobilized probe was visually detected via alkaline phosphatase-linked streptavidin. This enzyme conjugate catalyzed the dephosphorylation of the substrate 5-bromo-4-chloro-3-indolyl phosphate, leading to a series of reactions that generate an intense, dark blue pigment. The test was validated with 100 DNA samples, which shows good discrimination among different genotypes (normal, HbE, and heterozygous) with 100% accuracy when optimal conditions of analysis were applied. The method does not require temperature control and can be performed at ambient temperature. This is an attractive feature for diagnosis in primary care, which accounts for a large part of affected population. Graphical abstract Schematic representation of a paper-based sensor for the detection of the gene Hemoglobin E. The interaction between an immobilized peptide nucleic acid and a DNA target leads to enzymatic pigmentation, allowing simple visual readout with up to 100% accuracy.</description><subject>Alkaline phosphatase</subject><subject>Ambient temperature</subject><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enzymes</subject><subject>Erythrocytes</subject><subject>Gene mutations</subject><subject>Genetic testing</subject><subject>Hemoglobin</subject><subject>Microengineering</subject><subject>Mutation</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Nucleic acids</subject><subject>Original Paper</subject><subject>Peptides</subject><subject>Phosphatases</subject><subject>Phosphates</subject><subject>Substrates</subject><subject>Temperature control</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1ks1u1TAQhSMEoqXwAGyQJTZsUsZ2EifLqio_UiU2wNZy7PGtK8cOdiKRvhCviaNbqEAgLyzNfGd0xj5V9ZLCOQUQbzNAB00NDOqGDqLuH1WntOFd3YLgj6tTANbVvBPspHqW8y0AFR1rnlYnnNF-oLw9rX58dXlVnhwwxGWbXTiQaMlyo7zKGSenyLiRNe_1eUspemdc2DyZcV6cQRJW7dFporQzZE5xxEzcNMXReXeHhsRAtEpj_L5NuNxsXqP3q48Z6ykaZ11BZjVjIioYguGuYLULZtV7wx0mDItaXAzPqydW-Ywv7u-z6su7q8-XH-rrT-8_Xl5c17rhw1LbhqLpGTRYnmFUyDo7iIFrsKxrhRKtFYNtRUu7URjG2Qi2w1GN2GgBoFt-Vr05zi27fFsxL3JyeTetAsY1S8bFAIwCZQV9_Rd6G9cUirtCDazlfcPbB-qgPEoXbFyS0vtQeSFoC21PeVeo839Q5ZjyBzoGtK7U_xDQo0CnmHNCK-fkJpU2SUHu4ZDHcMgSDrmHQ_ZF8-re8DpOaH4rfqWhAOwI5NIKB0wPG_1_6k-7ZseQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Jirakittiwut, Nuttapon</creator><creator>Munkongdee, Thongperm</creator><creator>Wongravee, Kanet</creator><creator>Sripichai, Orapan</creator><creator>Fucharoen, Suthat</creator><creator>Praneenararat, Thanit</creator><creator>Vilaivan, Tirayut</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9165-2642</orcidid></search><sort><creationdate>20200401</creationdate><title>Visual genotyping of thalassemia by using pyrrolidinyl peptide nucleic acid probes immobilized on carboxymethylcellulose-modified paper and enzyme-induced pigmentation</title><author>Jirakittiwut, Nuttapon ; Munkongdee, Thongperm ; Wongravee, Kanet ; Sripichai, Orapan ; Fucharoen, Suthat ; Praneenararat, Thanit ; Vilaivan, Tirayut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-f41ed8204e436bae26f9793c0f2657a75f79f57516b7d232b0f6ebabe4c700c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkaline phosphatase</topic><topic>Ambient temperature</topic><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enzymes</topic><topic>Erythrocytes</topic><topic>Gene mutations</topic><topic>Genetic testing</topic><topic>Hemoglobin</topic><topic>Microengineering</topic><topic>Mutation</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Nucleic acids</topic><topic>Original Paper</topic><topic>Peptides</topic><topic>Phosphatases</topic><topic>Phosphates</topic><topic>Substrates</topic><topic>Temperature control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jirakittiwut, Nuttapon</creatorcontrib><creatorcontrib>Munkongdee, Thongperm</creatorcontrib><creatorcontrib>Wongravee, Kanet</creatorcontrib><creatorcontrib>Sripichai, Orapan</creatorcontrib><creatorcontrib>Fucharoen, Suthat</creatorcontrib><creatorcontrib>Praneenararat, Thanit</creatorcontrib><creatorcontrib>Vilaivan, Tirayut</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jirakittiwut, Nuttapon</au><au>Munkongdee, Thongperm</au><au>Wongravee, Kanet</au><au>Sripichai, Orapan</au><au>Fucharoen, Suthat</au><au>Praneenararat, Thanit</au><au>Vilaivan, Tirayut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual genotyping of thalassemia by using pyrrolidinyl peptide nucleic acid probes immobilized on carboxymethylcellulose-modified paper and enzyme-induced pigmentation</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><addtitle>Mikrochim Acta</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>187</volume><issue>4</issue><spage>238</spage><epage>238</epage><pages>238-238</pages><artnum>238</artnum><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>A simple probe pair was designed for the detection of hemoglobin E (HbE) genotype, a single-point mutation that leads to abnormal red blood cells commonly found in South East Asia. The key to differentiation is the use of a conformationally constrained peptide nucleic acid (PNA) that was immobilized on carboxymethylcellulose-modified paper. This was then used for target DNA binding and visualization by an enzyme-catalyzed pigmentation. The biotinylated target DNA bound to the immobilized probe was visually detected via alkaline phosphatase-linked streptavidin. This enzyme conjugate catalyzed the dephosphorylation of the substrate 5-bromo-4-chloro-3-indolyl phosphate, leading to a series of reactions that generate an intense, dark blue pigment. The test was validated with 100 DNA samples, which shows good discrimination among different genotypes (normal, HbE, and heterozygous) with 100% accuracy when optimal conditions of analysis were applied. The method does not require temperature control and can be performed at ambient temperature. This is an attractive feature for diagnosis in primary care, which accounts for a large part of affected population. Graphical abstract Schematic representation of a paper-based sensor for the detection of the gene Hemoglobin E. The interaction between an immobilized peptide nucleic acid and a DNA target leads to enzymatic pigmentation, allowing simple visual readout with up to 100% accuracy.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>32189135</pmid><doi>10.1007/s00604-020-4197-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9165-2642</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-3672
ispartof Mikrochimica acta (1966), 2020-04, Vol.187 (4), p.238-238, Article 238
issn 0026-3672
1436-5073
language eng
recordid cdi_proquest_miscellaneous_2379021012
source Springer Nature - Complete Springer Journals
subjects Alkaline phosphatase
Ambient temperature
Analytical Chemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Deoxyribonucleic acid
DNA
Enzymes
Erythrocytes
Gene mutations
Genetic testing
Hemoglobin
Microengineering
Mutation
Nanochemistry
Nanotechnology
Nucleic acids
Original Paper
Peptides
Phosphatases
Phosphates
Substrates
Temperature control
title Visual genotyping of thalassemia by using pyrrolidinyl peptide nucleic acid probes immobilized on carboxymethylcellulose-modified paper and enzyme-induced pigmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20genotyping%20of%20thalassemia%20by%20using%20pyrrolidinyl%20peptide%20nucleic%20acid%20probes%20immobilized%20on%20carboxymethylcellulose-modified%20paper%20and%20enzyme-induced%20pigmentation&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Jirakittiwut,%20Nuttapon&rft.date=2020-04-01&rft.volume=187&rft.issue=4&rft.spage=238&rft.epage=238&rft.pages=238-238&rft.artnum=238&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-020-4197-8&rft_dat=%3Cgale_proqu%3EA715058136%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392538435&rft_id=info:pmid/32189135&rft_galeid=A715058136&rfr_iscdi=true