DeltaDelta neural networks for lead optimization of small molecule potency

The capability to rank different potential drug molecules against a protein target for potency has always been a fundamental challenge in computational chemistry due to its importance in drug design. While several simulation-based methodologies exist, they are hard to use prospectively and thus pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2019-12, Vol.1 (47), p.1911-1918
Hauptverfasser: Jiménez-Luna, José, Pérez-Benito, Laura, Martínez-Rosell, Gerard, Sciabola, Simone, Torella, Rubben, Tresadern, Gary, De Fabritiis, Gianni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1918
container_issue 47
container_start_page 1911
container_title Chemical science (Cambridge)
container_volume 1
creator Jiménez-Luna, José
Pérez-Benito, Laura
Martínez-Rosell, Gerard
Sciabola, Simone
Torella, Rubben
Tresadern, Gary
De Fabritiis, Gianni
description The capability to rank different potential drug molecules against a protein target for potency has always been a fundamental challenge in computational chemistry due to its importance in drug design. While several simulation-based methodologies exist, they are hard to use prospectively and thus predicting potency in lead optimization campaigns remains an open challenge. Here we present the first machine learning approach specifically tailored for ranking congeneric series based on deep 3D-convolutional neural networks. Furthermore we prove its effectiveness by blindly testing it on datasets provided by Janssen, Pfizer and Biogen totalling over 3246 ligands and 13 targets as well as several well-known openly available sets, representing one the largest evaluations ever performed. We also performed online learning simulations of lead optimization using the approach in a predictive manner obtaining significant advantage over experimental choice. We believe that the evaluation performed in this study is strong evidence of the usefulness of a modern deep learning model in lead optimization pipelines against more expensive simulation-based alternatives. Machine learning approach tailored for ranking congeneric series based on 3D-convolutional neural networks tested it on over 3246 ligands and 13 targets.
doi_str_mv 10.1039/c9sc04606b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2379019477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379019477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-e509d1cca03eee1c0ce0b4b8884c15c5b939002259c4dc4993d4cde7e14c91b33</originalsourceid><addsrcrecordid>eNp9kstv1DAQhyNERau2F-6gIC4IaWH8SLy-IMECBVSJA3C2nMkEUpw42A6o_evxPgiPA5bssTWffzPjcVHcZfCEgdBPUUcEWUPd3CpOOEi2qiuhby97DsfFeYxXkIcQrOLqTnEsONPAZX1SvHtJLtndUo40B-uyST98-BrLzofSkW1LP6V-6G9s6v1Y-q6Mg3WuHLwjnB2Vk0804vVZcdRZF-n8YE-LT69ffdy8WV2-v3i7eX65wkqotKIKdMsQLQgiYghI0MhmvV5LZBVWjRYagPNKo2xRai1aiS0pYhI1a4Q4LZ7tdae5GahFGlNO20yhH2y4Nt725m_P2H8xn_13o6Cua8WyANsLYJzRBEIKaNPu4nLYTg6KG1GrNd8GfXQIGvy3mWIyQx-RnLMj-TkaLpQGpqVSGX34D3rl5zDmJ8kUBy0UsDpTjw9JBB9joG4pgIHZdtZs9IfNrrMvMnz_z5IX9FcfM_BgD4SIi_f31zBT22Xm3v8Y8RPHdbPe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320937016</pqid></control><display><type>article</type><title>DeltaDelta neural networks for lead optimization of small molecule potency</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jiménez-Luna, José ; Pérez-Benito, Laura ; Martínez-Rosell, Gerard ; Sciabola, Simone ; Torella, Rubben ; Tresadern, Gary ; De Fabritiis, Gianni</creator><creatorcontrib>Jiménez-Luna, José ; Pérez-Benito, Laura ; Martínez-Rosell, Gerard ; Sciabola, Simone ; Torella, Rubben ; Tresadern, Gary ; De Fabritiis, Gianni</creatorcontrib><description>The capability to rank different potential drug molecules against a protein target for potency has always been a fundamental challenge in computational chemistry due to its importance in drug design. While several simulation-based methodologies exist, they are hard to use prospectively and thus predicting potency in lead optimization campaigns remains an open challenge. Here we present the first machine learning approach specifically tailored for ranking congeneric series based on deep 3D-convolutional neural networks. Furthermore we prove its effectiveness by blindly testing it on datasets provided by Janssen, Pfizer and Biogen totalling over 3246 ligands and 13 targets as well as several well-known openly available sets, representing one the largest evaluations ever performed. We also performed online learning simulations of lead optimization using the approach in a predictive manner obtaining significant advantage over experimental choice. We believe that the evaluation performed in this study is strong evidence of the usefulness of a modern deep learning model in lead optimization pipelines against more expensive simulation-based alternatives. Machine learning approach tailored for ranking congeneric series based on 3D-convolutional neural networks tested it on over 3246 ligands and 13 targets.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc04606b</identifier><identifier>PMID: 32190246</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Artificial neural networks ; Chemistry ; Computational chemistry ; Computer simulation ; Distance learning ; Machine learning ; Neural networks ; Optimization ; Organic chemistry</subject><ispartof>Chemical science (Cambridge), 2019-12, Vol.1 (47), p.1911-1918</ispartof><rights>This journal is © The Royal Society of Chemistry 2019.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>info:eu-repo/semantics/openAccess © Royal Society of Chemistry 2019. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (&lt;a href="http://creativecommons.org/licenses/by/3.0/"&gt;http://creativecommons.org/licenses/by/3.0/&lt;/a&gt;) &lt;a href="http://creativecommons.org/licenses/by/3.0/"&gt;http://creativecommons.org/licenses/by/3.0/&lt;/a&gt;</rights><rights>This journal is © The Royal Society of Chemistry 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-e509d1cca03eee1c0ce0b4b8884c15c5b939002259c4dc4993d4cde7e14c91b33</citedby><cites>FETCH-LOGICAL-c537t-e509d1cca03eee1c0ce0b4b8884c15c5b939002259c4dc4993d4cde7e14c91b33</cites><orcidid>0000-0003-3913-4877 ; 0000-0002-5335-7834 ; 0000-0001-9607-9048 ; 0000-0002-4801-1644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066671/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066671/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,26973,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32190246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiménez-Luna, José</creatorcontrib><creatorcontrib>Pérez-Benito, Laura</creatorcontrib><creatorcontrib>Martínez-Rosell, Gerard</creatorcontrib><creatorcontrib>Sciabola, Simone</creatorcontrib><creatorcontrib>Torella, Rubben</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><title>DeltaDelta neural networks for lead optimization of small molecule potency</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The capability to rank different potential drug molecules against a protein target for potency has always been a fundamental challenge in computational chemistry due to its importance in drug design. While several simulation-based methodologies exist, they are hard to use prospectively and thus predicting potency in lead optimization campaigns remains an open challenge. Here we present the first machine learning approach specifically tailored for ranking congeneric series based on deep 3D-convolutional neural networks. Furthermore we prove its effectiveness by blindly testing it on datasets provided by Janssen, Pfizer and Biogen totalling over 3246 ligands and 13 targets as well as several well-known openly available sets, representing one the largest evaluations ever performed. We also performed online learning simulations of lead optimization using the approach in a predictive manner obtaining significant advantage over experimental choice. We believe that the evaluation performed in this study is strong evidence of the usefulness of a modern deep learning model in lead optimization pipelines against more expensive simulation-based alternatives. Machine learning approach tailored for ranking congeneric series based on 3D-convolutional neural networks tested it on over 3246 ligands and 13 targets.</description><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Computational chemistry</subject><subject>Computer simulation</subject><subject>Distance learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Organic chemistry</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kstv1DAQhyNERau2F-6gIC4IaWH8SLy-IMECBVSJA3C2nMkEUpw42A6o_evxPgiPA5bssTWffzPjcVHcZfCEgdBPUUcEWUPd3CpOOEi2qiuhby97DsfFeYxXkIcQrOLqTnEsONPAZX1SvHtJLtndUo40B-uyST98-BrLzofSkW1LP6V-6G9s6v1Y-q6Mg3WuHLwjnB2Vk0804vVZcdRZF-n8YE-LT69ffdy8WV2-v3i7eX65wkqotKIKdMsQLQgiYghI0MhmvV5LZBVWjRYagPNKo2xRai1aiS0pYhI1a4Q4LZ7tdae5GahFGlNO20yhH2y4Nt725m_P2H8xn_13o6Cua8WyANsLYJzRBEIKaNPu4nLYTg6KG1GrNd8GfXQIGvy3mWIyQx-RnLMj-TkaLpQGpqVSGX34D3rl5zDmJ8kUBy0UsDpTjw9JBB9joG4pgIHZdtZs9IfNrrMvMnz_z5IX9FcfM_BgD4SIi_f31zBT22Xm3v8Y8RPHdbPe</recordid><startdate>20191221</startdate><enddate>20191221</enddate><creator>Jiménez-Luna, José</creator><creator>Pérez-Benito, Laura</creator><creator>Martínez-Rosell, Gerard</creator><creator>Sciabola, Simone</creator><creator>Torella, Rubben</creator><creator>Tresadern, Gary</creator><creator>De Fabritiis, Gianni</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3913-4877</orcidid><orcidid>https://orcid.org/0000-0002-5335-7834</orcidid><orcidid>https://orcid.org/0000-0001-9607-9048</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid></search><sort><creationdate>20191221</creationdate><title>DeltaDelta neural networks for lead optimization of small molecule potency</title><author>Jiménez-Luna, José ; Pérez-Benito, Laura ; Martínez-Rosell, Gerard ; Sciabola, Simone ; Torella, Rubben ; Tresadern, Gary ; De Fabritiis, Gianni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-e509d1cca03eee1c0ce0b4b8884c15c5b939002259c4dc4993d4cde7e14c91b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Computational chemistry</topic><topic>Computer simulation</topic><topic>Distance learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-Luna, José</creatorcontrib><creatorcontrib>Pérez-Benito, Laura</creatorcontrib><creatorcontrib>Martínez-Rosell, Gerard</creatorcontrib><creatorcontrib>Sciabola, Simone</creatorcontrib><creatorcontrib>Torella, Rubben</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-Luna, José</au><au>Pérez-Benito, Laura</au><au>Martínez-Rosell, Gerard</au><au>Sciabola, Simone</au><au>Torella, Rubben</au><au>Tresadern, Gary</au><au>De Fabritiis, Gianni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeltaDelta neural networks for lead optimization of small molecule potency</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2019-12-21</date><risdate>2019</risdate><volume>1</volume><issue>47</issue><spage>1911</spage><epage>1918</epage><pages>1911-1918</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The capability to rank different potential drug molecules against a protein target for potency has always been a fundamental challenge in computational chemistry due to its importance in drug design. While several simulation-based methodologies exist, they are hard to use prospectively and thus predicting potency in lead optimization campaigns remains an open challenge. Here we present the first machine learning approach specifically tailored for ranking congeneric series based on deep 3D-convolutional neural networks. Furthermore we prove its effectiveness by blindly testing it on datasets provided by Janssen, Pfizer and Biogen totalling over 3246 ligands and 13 targets as well as several well-known openly available sets, representing one the largest evaluations ever performed. We also performed online learning simulations of lead optimization using the approach in a predictive manner obtaining significant advantage over experimental choice. We believe that the evaluation performed in this study is strong evidence of the usefulness of a modern deep learning model in lead optimization pipelines against more expensive simulation-based alternatives. Machine learning approach tailored for ranking congeneric series based on 3D-convolutional neural networks tested it on over 3246 ligands and 13 targets.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32190246</pmid><doi>10.1039/c9sc04606b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3913-4877</orcidid><orcidid>https://orcid.org/0000-0002-5335-7834</orcidid><orcidid>https://orcid.org/0000-0001-9607-9048</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2019-12, Vol.1 (47), p.1911-1918
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_miscellaneous_2379019477
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; Recercat; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Artificial neural networks
Chemistry
Computational chemistry
Computer simulation
Distance learning
Machine learning
Neural networks
Optimization
Organic chemistry
title DeltaDelta neural networks for lead optimization of small molecule potency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeltaDelta%20neural%20networks%20for%20lead%20optimization%20of%20small%20molecule%20potency&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Jim%C3%A9nez-Luna,%20Jos%C3%A9&rft.date=2019-12-21&rft.volume=1&rft.issue=47&rft.spage=1911&rft.epage=1918&rft.pages=1911-1918&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc04606b&rft_dat=%3Cproquest_pubme%3E2379019477%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2320937016&rft_id=info:pmid/32190246&rfr_iscdi=true