DeltaDelta neural networks for lead optimization of small molecule potency
The capability to rank different potential drug molecules against a protein target for potency has always been a fundamental challenge in computational chemistry due to its importance in drug design. While several simulation-based methodologies exist, they are hard to use prospectively and thus pred...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2019-12, Vol.1 (47), p.1911-1918 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1918 |
---|---|
container_issue | 47 |
container_start_page | 1911 |
container_title | Chemical science (Cambridge) |
container_volume | 1 |
creator | Jiménez-Luna, José Pérez-Benito, Laura Martínez-Rosell, Gerard Sciabola, Simone Torella, Rubben Tresadern, Gary De Fabritiis, Gianni |
description | The capability to rank different potential drug molecules against a protein target for potency has always been a fundamental challenge in computational chemistry due to its importance in drug design. While several simulation-based methodologies exist, they are hard to use prospectively and thus predicting potency in lead optimization campaigns remains an open challenge. Here we present the first machine learning approach specifically tailored for ranking congeneric series based on deep 3D-convolutional neural networks. Furthermore we prove its effectiveness by blindly testing it on datasets provided by Janssen, Pfizer and Biogen totalling over 3246 ligands and 13 targets as well as several well-known openly available sets, representing one the largest evaluations ever performed. We also performed online learning simulations of lead optimization using the approach in a predictive manner obtaining significant advantage over experimental choice. We believe that the evaluation performed in this study is strong evidence of the usefulness of a modern deep learning model in lead optimization pipelines against more expensive simulation-based alternatives.
Machine learning approach tailored for ranking congeneric series based on 3D-convolutional neural networks tested it on over 3246 ligands and 13 targets. |
doi_str_mv | 10.1039/c9sc04606b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2379019477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379019477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-e509d1cca03eee1c0ce0b4b8884c15c5b939002259c4dc4993d4cde7e14c91b33</originalsourceid><addsrcrecordid>eNp9kstv1DAQhyNERau2F-6gIC4IaWH8SLy-IMECBVSJA3C2nMkEUpw42A6o_evxPgiPA5bssTWffzPjcVHcZfCEgdBPUUcEWUPd3CpOOEi2qiuhby97DsfFeYxXkIcQrOLqTnEsONPAZX1SvHtJLtndUo40B-uyST98-BrLzofSkW1LP6V-6G9s6v1Y-q6Mg3WuHLwjnB2Vk0804vVZcdRZF-n8YE-LT69ffdy8WV2-v3i7eX65wkqotKIKdMsQLQgiYghI0MhmvV5LZBVWjRYagPNKo2xRai1aiS0pYhI1a4Q4LZ7tdae5GahFGlNO20yhH2y4Nt725m_P2H8xn_13o6Cua8WyANsLYJzRBEIKaNPu4nLYTg6KG1GrNd8GfXQIGvy3mWIyQx-RnLMj-TkaLpQGpqVSGX34D3rl5zDmJ8kUBy0UsDpTjw9JBB9joG4pgIHZdtZs9IfNrrMvMnz_z5IX9FcfM_BgD4SIi_f31zBT22Xm3v8Y8RPHdbPe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320937016</pqid></control><display><type>article</type><title>DeltaDelta neural networks for lead optimization of small molecule potency</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jiménez-Luna, José ; Pérez-Benito, Laura ; Martínez-Rosell, Gerard ; Sciabola, Simone ; Torella, Rubben ; Tresadern, Gary ; De Fabritiis, Gianni</creator><creatorcontrib>Jiménez-Luna, José ; Pérez-Benito, Laura ; Martínez-Rosell, Gerard ; Sciabola, Simone ; Torella, Rubben ; Tresadern, Gary ; De Fabritiis, Gianni</creatorcontrib><description>The capability to rank different potential drug molecules against a protein target for potency has always been a fundamental challenge in computational chemistry due to its importance in drug design. While several simulation-based methodologies exist, they are hard to use prospectively and thus predicting potency in lead optimization campaigns remains an open challenge. Here we present the first machine learning approach specifically tailored for ranking congeneric series based on deep 3D-convolutional neural networks. Furthermore we prove its effectiveness by blindly testing it on datasets provided by Janssen, Pfizer and Biogen totalling over 3246 ligands and 13 targets as well as several well-known openly available sets, representing one the largest evaluations ever performed. We also performed online learning simulations of lead optimization using the approach in a predictive manner obtaining significant advantage over experimental choice. We believe that the evaluation performed in this study is strong evidence of the usefulness of a modern deep learning model in lead optimization pipelines against more expensive simulation-based alternatives.
Machine learning approach tailored for ranking congeneric series based on 3D-convolutional neural networks tested it on over 3246 ligands and 13 targets.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc04606b</identifier><identifier>PMID: 32190246</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Artificial neural networks ; Chemistry ; Computational chemistry ; Computer simulation ; Distance learning ; Machine learning ; Neural networks ; Optimization ; Organic chemistry</subject><ispartof>Chemical science (Cambridge), 2019-12, Vol.1 (47), p.1911-1918</ispartof><rights>This journal is © The Royal Society of Chemistry 2019.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>info:eu-repo/semantics/openAccess © Royal Society of Chemistry 2019. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (<a href="http://creativecommons.org/licenses/by/3.0/">http://creativecommons.org/licenses/by/3.0/</a>) <a href="http://creativecommons.org/licenses/by/3.0/">http://creativecommons.org/licenses/by/3.0/</a></rights><rights>This journal is © The Royal Society of Chemistry 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-e509d1cca03eee1c0ce0b4b8884c15c5b939002259c4dc4993d4cde7e14c91b33</citedby><cites>FETCH-LOGICAL-c537t-e509d1cca03eee1c0ce0b4b8884c15c5b939002259c4dc4993d4cde7e14c91b33</cites><orcidid>0000-0003-3913-4877 ; 0000-0002-5335-7834 ; 0000-0001-9607-9048 ; 0000-0002-4801-1644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066671/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066671/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,26973,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32190246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiménez-Luna, José</creatorcontrib><creatorcontrib>Pérez-Benito, Laura</creatorcontrib><creatorcontrib>Martínez-Rosell, Gerard</creatorcontrib><creatorcontrib>Sciabola, Simone</creatorcontrib><creatorcontrib>Torella, Rubben</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><title>DeltaDelta neural networks for lead optimization of small molecule potency</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The capability to rank different potential drug molecules against a protein target for potency has always been a fundamental challenge in computational chemistry due to its importance in drug design. While several simulation-based methodologies exist, they are hard to use prospectively and thus predicting potency in lead optimization campaigns remains an open challenge. Here we present the first machine learning approach specifically tailored for ranking congeneric series based on deep 3D-convolutional neural networks. Furthermore we prove its effectiveness by blindly testing it on datasets provided by Janssen, Pfizer and Biogen totalling over 3246 ligands and 13 targets as well as several well-known openly available sets, representing one the largest evaluations ever performed. We also performed online learning simulations of lead optimization using the approach in a predictive manner obtaining significant advantage over experimental choice. We believe that the evaluation performed in this study is strong evidence of the usefulness of a modern deep learning model in lead optimization pipelines against more expensive simulation-based alternatives.
Machine learning approach tailored for ranking congeneric series based on 3D-convolutional neural networks tested it on over 3246 ligands and 13 targets.</description><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Computational chemistry</subject><subject>Computer simulation</subject><subject>Distance learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Organic chemistry</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kstv1DAQhyNERau2F-6gIC4IaWH8SLy-IMECBVSJA3C2nMkEUpw42A6o_evxPgiPA5bssTWffzPjcVHcZfCEgdBPUUcEWUPd3CpOOEi2qiuhby97DsfFeYxXkIcQrOLqTnEsONPAZX1SvHtJLtndUo40B-uyST98-BrLzofSkW1LP6V-6G9s6v1Y-q6Mg3WuHLwjnB2Vk0804vVZcdRZF-n8YE-LT69ffdy8WV2-v3i7eX65wkqotKIKdMsQLQgiYghI0MhmvV5LZBVWjRYagPNKo2xRai1aiS0pYhI1a4Q4LZ7tdae5GahFGlNO20yhH2y4Nt725m_P2H8xn_13o6Cua8WyANsLYJzRBEIKaNPu4nLYTg6KG1GrNd8GfXQIGvy3mWIyQx-RnLMj-TkaLpQGpqVSGX34D3rl5zDmJ8kUBy0UsDpTjw9JBB9joG4pgIHZdtZs9IfNrrMvMnz_z5IX9FcfM_BgD4SIi_f31zBT22Xm3v8Y8RPHdbPe</recordid><startdate>20191221</startdate><enddate>20191221</enddate><creator>Jiménez-Luna, José</creator><creator>Pérez-Benito, Laura</creator><creator>Martínez-Rosell, Gerard</creator><creator>Sciabola, Simone</creator><creator>Torella, Rubben</creator><creator>Tresadern, Gary</creator><creator>De Fabritiis, Gianni</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3913-4877</orcidid><orcidid>https://orcid.org/0000-0002-5335-7834</orcidid><orcidid>https://orcid.org/0000-0001-9607-9048</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid></search><sort><creationdate>20191221</creationdate><title>DeltaDelta neural networks for lead optimization of small molecule potency</title><author>Jiménez-Luna, José ; Pérez-Benito, Laura ; Martínez-Rosell, Gerard ; Sciabola, Simone ; Torella, Rubben ; Tresadern, Gary ; De Fabritiis, Gianni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-e509d1cca03eee1c0ce0b4b8884c15c5b939002259c4dc4993d4cde7e14c91b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Computational chemistry</topic><topic>Computer simulation</topic><topic>Distance learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-Luna, José</creatorcontrib><creatorcontrib>Pérez-Benito, Laura</creatorcontrib><creatorcontrib>Martínez-Rosell, Gerard</creatorcontrib><creatorcontrib>Sciabola, Simone</creatorcontrib><creatorcontrib>Torella, Rubben</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-Luna, José</au><au>Pérez-Benito, Laura</au><au>Martínez-Rosell, Gerard</au><au>Sciabola, Simone</au><au>Torella, Rubben</au><au>Tresadern, Gary</au><au>De Fabritiis, Gianni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeltaDelta neural networks for lead optimization of small molecule potency</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2019-12-21</date><risdate>2019</risdate><volume>1</volume><issue>47</issue><spage>1911</spage><epage>1918</epage><pages>1911-1918</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The capability to rank different potential drug molecules against a protein target for potency has always been a fundamental challenge in computational chemistry due to its importance in drug design. While several simulation-based methodologies exist, they are hard to use prospectively and thus predicting potency in lead optimization campaigns remains an open challenge. Here we present the first machine learning approach specifically tailored for ranking congeneric series based on deep 3D-convolutional neural networks. Furthermore we prove its effectiveness by blindly testing it on datasets provided by Janssen, Pfizer and Biogen totalling over 3246 ligands and 13 targets as well as several well-known openly available sets, representing one the largest evaluations ever performed. We also performed online learning simulations of lead optimization using the approach in a predictive manner obtaining significant advantage over experimental choice. We believe that the evaluation performed in this study is strong evidence of the usefulness of a modern deep learning model in lead optimization pipelines against more expensive simulation-based alternatives.
Machine learning approach tailored for ranking congeneric series based on 3D-convolutional neural networks tested it on over 3246 ligands and 13 targets.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32190246</pmid><doi>10.1039/c9sc04606b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3913-4877</orcidid><orcidid>https://orcid.org/0000-0002-5335-7834</orcidid><orcidid>https://orcid.org/0000-0001-9607-9048</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2019-12, Vol.1 (47), p.1911-1918 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_proquest_miscellaneous_2379019477 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Recercat; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Artificial neural networks Chemistry Computational chemistry Computer simulation Distance learning Machine learning Neural networks Optimization Organic chemistry |
title | DeltaDelta neural networks for lead optimization of small molecule potency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeltaDelta%20neural%20networks%20for%20lead%20optimization%20of%20small%20molecule%20potency&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Jim%C3%A9nez-Luna,%20Jos%C3%A9&rft.date=2019-12-21&rft.volume=1&rft.issue=47&rft.spage=1911&rft.epage=1918&rft.pages=1911-1918&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc04606b&rft_dat=%3Cproquest_pubme%3E2379019477%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2320937016&rft_id=info:pmid/32190246&rfr_iscdi=true |