Hot Carriers in Halide Perovskites: How Hot Truly?

Slow hot carrier cooling in halide perovskites holds the key to the development of hot carrier (HC) perovskite solar cells. For accurate modeling and pragmatic design of HC materials and devices, it is essential that HC temperatures are reliably determined. A common approach involves fitting the hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-04, Vol.11 (7), p.2743-2750
Hauptverfasser: Lim, Jia Wei Melvin, Giovanni, David, Righetto, Marcello, Feng, Minjun, Mhaisalkar, Subodh Gautam, Mathews, Nripan, Sum, Tze Chien
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2750
container_issue 7
container_start_page 2743
container_title The journal of physical chemistry letters
container_volume 11
creator Lim, Jia Wei Melvin
Giovanni, David
Righetto, Marcello
Feng, Minjun
Mhaisalkar, Subodh Gautam
Mathews, Nripan
Sum, Tze Chien
description Slow hot carrier cooling in halide perovskites holds the key to the development of hot carrier (HC) perovskite solar cells. For accurate modeling and pragmatic design of HC materials and devices, it is essential that HC temperatures are reliably determined. A common approach involves fitting the high-energy tail of the main photobleaching peak in a transient absorption spectrum with a Maxwell–Boltzmann distribution. However, this approach is problematic because of complications from the overlap of several photophysical phenomena and a lack of consensus in the community on the fitting procedures. Herein, we propose a simple approach that circumvents these challenges. Through tracking the broadband spectral evolution and accounting for bandgap renormalization and spectral line width broadening effects, our method extracts not only accurate and consistent carrier temperatures but also other important parameters such as the quasi-Fermi levels, bandgap renormalization constant, etc. Establishing a reliable method for the carrier temperature determination is a step forward in the study of HCs for next-generation perovskite optoelectronics.
doi_str_mv 10.1021/acs.jpclett.0c00504
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2378897870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378897870</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-f7bd4f85e99d4d8af246307f08b54b32ff78617b90ac77be45ebf571fdad6c523</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EoqXwBEgoI0vasx3HNgtCFRCkSjCU2bIdW0pJm2InoL49KQ2Iielu-P7_dB9ClximGAieaRunq62tXdtOwQIwyI7QGMtMpBwLdvxnH6GzGFcAuQTBT9GIEiwoAzFGpGjaZK5DqFyISbVJCl1XpUteXGg-4lvVuniTFM1nsueWoat3t-foxOs6uothTtDrw_1yXqSL58en-d0i1VRCm3puyswL5qQss1JoT7KcAvcgDMsMJd5zkWNuJGjLuXEZc8Yzjn2py9wyQifo-tC7Dc1752Kr1lW0rq71xjVdVIRyISQXHHqUHlAbmhiD82obqrUOO4VB7WWpXpYaZKlBVp-6Gg50Zu3K38yPnR6YHYDvdNOFTf_vv5Vfe-53aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378897870</pqid></control><display><type>article</type><title>Hot Carriers in Halide Perovskites: How Hot Truly?</title><source>American Chemical Society Journals</source><creator>Lim, Jia Wei Melvin ; Giovanni, David ; Righetto, Marcello ; Feng, Minjun ; Mhaisalkar, Subodh Gautam ; Mathews, Nripan ; Sum, Tze Chien</creator><creatorcontrib>Lim, Jia Wei Melvin ; Giovanni, David ; Righetto, Marcello ; Feng, Minjun ; Mhaisalkar, Subodh Gautam ; Mathews, Nripan ; Sum, Tze Chien</creatorcontrib><description>Slow hot carrier cooling in halide perovskites holds the key to the development of hot carrier (HC) perovskite solar cells. For accurate modeling and pragmatic design of HC materials and devices, it is essential that HC temperatures are reliably determined. A common approach involves fitting the high-energy tail of the main photobleaching peak in a transient absorption spectrum with a Maxwell–Boltzmann distribution. However, this approach is problematic because of complications from the overlap of several photophysical phenomena and a lack of consensus in the community on the fitting procedures. Herein, we propose a simple approach that circumvents these challenges. Through tracking the broadband spectral evolution and accounting for bandgap renormalization and spectral line width broadening effects, our method extracts not only accurate and consistent carrier temperatures but also other important parameters such as the quasi-Fermi levels, bandgap renormalization constant, etc. Establishing a reliable method for the carrier temperature determination is a step forward in the study of HCs for next-generation perovskite optoelectronics.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c00504</identifier><identifier>PMID: 32183508</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2020-04, Vol.11 (7), p.2743-2750</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-f7bd4f85e99d4d8af246307f08b54b32ff78617b90ac77be45ebf571fdad6c523</citedby><cites>FETCH-LOGICAL-a390t-f7bd4f85e99d4d8af246307f08b54b32ff78617b90ac77be45ebf571fdad6c523</cites><orcidid>0000-0001-5234-0822 ; 0000-0001-6284-2340 ; 0000-0003-4049-2719 ; 0000-0002-2764-5613 ; 0000-0002-9895-2426 ; 0000-0002-3504-7699 ; 0000-0001-5507-1445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.0c00504$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c00504$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32183508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Jia Wei Melvin</creatorcontrib><creatorcontrib>Giovanni, David</creatorcontrib><creatorcontrib>Righetto, Marcello</creatorcontrib><creatorcontrib>Feng, Minjun</creatorcontrib><creatorcontrib>Mhaisalkar, Subodh Gautam</creatorcontrib><creatorcontrib>Mathews, Nripan</creatorcontrib><creatorcontrib>Sum, Tze Chien</creatorcontrib><title>Hot Carriers in Halide Perovskites: How Hot Truly?</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Slow hot carrier cooling in halide perovskites holds the key to the development of hot carrier (HC) perovskite solar cells. For accurate modeling and pragmatic design of HC materials and devices, it is essential that HC temperatures are reliably determined. A common approach involves fitting the high-energy tail of the main photobleaching peak in a transient absorption spectrum with a Maxwell–Boltzmann distribution. However, this approach is problematic because of complications from the overlap of several photophysical phenomena and a lack of consensus in the community on the fitting procedures. Herein, we propose a simple approach that circumvents these challenges. Through tracking the broadband spectral evolution and accounting for bandgap renormalization and spectral line width broadening effects, our method extracts not only accurate and consistent carrier temperatures but also other important parameters such as the quasi-Fermi levels, bandgap renormalization constant, etc. Establishing a reliable method for the carrier temperature determination is a step forward in the study of HCs for next-generation perovskite optoelectronics.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EoqXwBEgoI0vasx3HNgtCFRCkSjCU2bIdW0pJm2InoL49KQ2Iielu-P7_dB9ClximGAieaRunq62tXdtOwQIwyI7QGMtMpBwLdvxnH6GzGFcAuQTBT9GIEiwoAzFGpGjaZK5DqFyISbVJCl1XpUteXGg-4lvVuniTFM1nsueWoat3t-foxOs6uothTtDrw_1yXqSL58en-d0i1VRCm3puyswL5qQss1JoT7KcAvcgDMsMJd5zkWNuJGjLuXEZc8Yzjn2py9wyQifo-tC7Dc1752Kr1lW0rq71xjVdVIRyISQXHHqUHlAbmhiD82obqrUOO4VB7WWpXpYaZKlBVp-6Gg50Zu3K38yPnR6YHYDvdNOFTf_vv5Vfe-53aw</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Lim, Jia Wei Melvin</creator><creator>Giovanni, David</creator><creator>Righetto, Marcello</creator><creator>Feng, Minjun</creator><creator>Mhaisalkar, Subodh Gautam</creator><creator>Mathews, Nripan</creator><creator>Sum, Tze Chien</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5234-0822</orcidid><orcidid>https://orcid.org/0000-0001-6284-2340</orcidid><orcidid>https://orcid.org/0000-0003-4049-2719</orcidid><orcidid>https://orcid.org/0000-0002-2764-5613</orcidid><orcidid>https://orcid.org/0000-0002-9895-2426</orcidid><orcidid>https://orcid.org/0000-0002-3504-7699</orcidid><orcidid>https://orcid.org/0000-0001-5507-1445</orcidid></search><sort><creationdate>20200402</creationdate><title>Hot Carriers in Halide Perovskites: How Hot Truly?</title><author>Lim, Jia Wei Melvin ; Giovanni, David ; Righetto, Marcello ; Feng, Minjun ; Mhaisalkar, Subodh Gautam ; Mathews, Nripan ; Sum, Tze Chien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-f7bd4f85e99d4d8af246307f08b54b32ff78617b90ac77be45ebf571fdad6c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jia Wei Melvin</creatorcontrib><creatorcontrib>Giovanni, David</creatorcontrib><creatorcontrib>Righetto, Marcello</creatorcontrib><creatorcontrib>Feng, Minjun</creatorcontrib><creatorcontrib>Mhaisalkar, Subodh Gautam</creatorcontrib><creatorcontrib>Mathews, Nripan</creatorcontrib><creatorcontrib>Sum, Tze Chien</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jia Wei Melvin</au><au>Giovanni, David</au><au>Righetto, Marcello</au><au>Feng, Minjun</au><au>Mhaisalkar, Subodh Gautam</au><au>Mathews, Nripan</au><au>Sum, Tze Chien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot Carriers in Halide Perovskites: How Hot Truly?</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2020-04-02</date><risdate>2020</risdate><volume>11</volume><issue>7</issue><spage>2743</spage><epage>2750</epage><pages>2743-2750</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Slow hot carrier cooling in halide perovskites holds the key to the development of hot carrier (HC) perovskite solar cells. For accurate modeling and pragmatic design of HC materials and devices, it is essential that HC temperatures are reliably determined. A common approach involves fitting the high-energy tail of the main photobleaching peak in a transient absorption spectrum with a Maxwell–Boltzmann distribution. However, this approach is problematic because of complications from the overlap of several photophysical phenomena and a lack of consensus in the community on the fitting procedures. Herein, we propose a simple approach that circumvents these challenges. Through tracking the broadband spectral evolution and accounting for bandgap renormalization and spectral line width broadening effects, our method extracts not only accurate and consistent carrier temperatures but also other important parameters such as the quasi-Fermi levels, bandgap renormalization constant, etc. Establishing a reliable method for the carrier temperature determination is a step forward in the study of HCs for next-generation perovskite optoelectronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32183508</pmid><doi>10.1021/acs.jpclett.0c00504</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5234-0822</orcidid><orcidid>https://orcid.org/0000-0001-6284-2340</orcidid><orcidid>https://orcid.org/0000-0003-4049-2719</orcidid><orcidid>https://orcid.org/0000-0002-2764-5613</orcidid><orcidid>https://orcid.org/0000-0002-9895-2426</orcidid><orcidid>https://orcid.org/0000-0002-3504-7699</orcidid><orcidid>https://orcid.org/0000-0001-5507-1445</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2020-04, Vol.11 (7), p.2743-2750
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2378897870
source American Chemical Society Journals
title Hot Carriers in Halide Perovskites: How Hot Truly?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20Carriers%20in%20Halide%20Perovskites:%20How%20Hot%20Truly?&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Lim,%20Jia%20Wei%20Melvin&rft.date=2020-04-02&rft.volume=11&rft.issue=7&rft.spage=2743&rft.epage=2750&rft.pages=2743-2750&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c00504&rft_dat=%3Cproquest_cross%3E2378897870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378897870&rft_id=info:pmid/32183508&rfr_iscdi=true