A low-cost smartphone controlled portable system with accurately confined on-chip 3D electrodes for flow-through cell electroporation
[Display omitted] •3D electrodes with close and uniform electrode spacing are achieved.•Flow-through electroporation at a low DC voltage of 1.5 V is demonstrated.•Squeeze flow is introduced to produce higher electric field.•A smartphone controlled microfluidic electroporation system is presented. Mi...
Gespeichert in:
Veröffentlicht in: | Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2020-08, Vol.134, p.107486-107486, Article 107486 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107486 |
---|---|
container_issue | |
container_start_page | 107486 |
container_title | Bioelectrochemistry (Amsterdam, Netherlands) |
container_volume | 134 |
creator | Han, Chao He, Xiwen Wang, Jie Gao, Lingeng Yang, Guang Li, Dongji Wang, Shuying Chen, Xiang Peng, Zhihai |
description | [Display omitted]
•3D electrodes with close and uniform electrode spacing are achieved.•Flow-through electroporation at a low DC voltage of 1.5 V is demonstrated.•Squeeze flow is introduced to produce higher electric field.•A smartphone controlled microfluidic electroporation system is presented.
Microscale flow-through electroporation at DC voltage has advantages in delivering small molecules. Yet, electroporation based on constant voltage are liable to generate electrolysis products which limits the voltage-operating window. Parallel on-chip 3D electrodes with close and uniform spacing are required to cut down voltage as well as provide enough electric field for electroporation. Here we present a simple electrode fabrication method based on capillary restriction valves in Z-axis to achieve parallel 3D electrodes with controllable electrode spacing in PDMS chips. With electrodes accurately placed in close range, a low voltage of only 1.5 V can generate enough electric field (>400 V/cm) to make cell membrane permeable. Squeeze flow is introduced to produce higher electric field (>800 V/cm) at a fixed voltage for more efficient electroporation. Benefit from the electrode fabrication method and application of squeeze flow, we develop a smartphone controlled microfluidic electroporation system which integrate functions of sample injection, pressure regulating, real-time observation and constant DC power supply. The system is used to electroporate two cell lines, showing a permeabilization percentage of 63% for HEK-293 cells and 58% for CHO-K1 cells with optimal parameters. Thus, the portable microfluidic system provides a cost-effective and user-friendly flow-through cell electroporation platform. |
doi_str_mv | 10.1016/j.bioelechem.2020.107486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2377995263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567539419306425</els_id><sourcerecordid>2505418186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-492097659bba521b6d83026544acc923163ec783729e1ffdb727a23cdf4c22b43</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhSMEoj_wCsgSGza5-N_OshQoSJXYtBI7K3EmxFdOHGyn1X0A3ruObgsSm648sr4zc3ROVSGCdwQT-XG_61wAD3aEaUcx3b4V1_JFdUq00rWQ9OfLMgupasEaflKdpbTHGGuixOvqhFGiGi7oafXnAvlwX9uQMkpTG_MyhhmQDXOOwXvo0RJibjsPKB1Shgnduzyi1to1thn8YUMHNxcwzLUd3YLYZ7RZK_oeEhpCRMN2Io8xrL9GZMH7J6DsbrML85vq1dD6BG8f3_Pq9uuXm8tv9fWPq--XF9e15ZjmmjcUN0qKputaQUkne80wlYLz4qehjEgGVmmmaANkGPpOUdVSZvuBW0o7zs6rD8e9Swy_V0jZTC5thtoZwpoMZUo1jaCSFfT9f-g-rHEu7gwVWHCiiZaF0kfKxpBShMEs0ZUYD4Zgs1Vl9uZfVWaryhyrKtJ3jwfWboL-r_CpmwJ8OgJQErlzEE2yDmYLvYslPdMH9_yVB7hAq7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505418186</pqid></control><display><type>article</type><title>A low-cost smartphone controlled portable system with accurately confined on-chip 3D electrodes for flow-through cell electroporation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Han, Chao ; He, Xiwen ; Wang, Jie ; Gao, Lingeng ; Yang, Guang ; Li, Dongji ; Wang, Shuying ; Chen, Xiang ; Peng, Zhihai</creator><creatorcontrib>Han, Chao ; He, Xiwen ; Wang, Jie ; Gao, Lingeng ; Yang, Guang ; Li, Dongji ; Wang, Shuying ; Chen, Xiang ; Peng, Zhihai</creatorcontrib><description>[Display omitted]
•3D electrodes with close and uniform electrode spacing are achieved.•Flow-through electroporation at a low DC voltage of 1.5 V is demonstrated.•Squeeze flow is introduced to produce higher electric field.•A smartphone controlled microfluidic electroporation system is presented.
Microscale flow-through electroporation at DC voltage has advantages in delivering small molecules. Yet, electroporation based on constant voltage are liable to generate electrolysis products which limits the voltage-operating window. Parallel on-chip 3D electrodes with close and uniform spacing are required to cut down voltage as well as provide enough electric field for electroporation. Here we present a simple electrode fabrication method based on capillary restriction valves in Z-axis to achieve parallel 3D electrodes with controllable electrode spacing in PDMS chips. With electrodes accurately placed in close range, a low voltage of only 1.5 V can generate enough electric field (>400 V/cm) to make cell membrane permeable. Squeeze flow is introduced to produce higher electric field (>800 V/cm) at a fixed voltage for more efficient electroporation. Benefit from the electrode fabrication method and application of squeeze flow, we develop a smartphone controlled microfluidic electroporation system which integrate functions of sample injection, pressure regulating, real-time observation and constant DC power supply. The system is used to electroporate two cell lines, showing a permeabilization percentage of 63% for HEK-293 cells and 58% for CHO-K1 cells with optimal parameters. Thus, the portable microfluidic system provides a cost-effective and user-friendly flow-through cell electroporation platform.</description><identifier>ISSN: 1567-5394</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/j.bioelechem.2020.107486</identifier><identifier>PMID: 32179452</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3D microelectrodes ; Cell electroporation ; Cell lines ; Cell membranes ; Costs and Cost Analysis ; Electric fields ; Electric power supplies ; Electrodes ; Electrodes - economics ; Electrolysis ; Electrolytic cells ; Electroporation ; Electroporation - economics ; Electroporation - instrumentation ; Fabrication ; HEK293 Cells ; Humans ; Lab-On-A-Chip Devices - economics ; Low voltage ; Low-cost fabrication ; Microfluidics ; Portable system ; Smartphone - economics ; Smartphones ; Stability ; Three dimensional flow ; Voltage</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2020-08, Vol.134, p.107486-107486, Article 107486</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Aug 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-492097659bba521b6d83026544acc923163ec783729e1ffdb727a23cdf4c22b43</citedby><cites>FETCH-LOGICAL-c402t-492097659bba521b6d83026544acc923163ec783729e1ffdb727a23cdf4c22b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bioelechem.2020.107486$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32179452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Chao</creatorcontrib><creatorcontrib>He, Xiwen</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Gao, Lingeng</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Li, Dongji</creatorcontrib><creatorcontrib>Wang, Shuying</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Peng, Zhihai</creatorcontrib><title>A low-cost smartphone controlled portable system with accurately confined on-chip 3D electrodes for flow-through cell electroporation</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>[Display omitted]
•3D electrodes with close and uniform electrode spacing are achieved.•Flow-through electroporation at a low DC voltage of 1.5 V is demonstrated.•Squeeze flow is introduced to produce higher electric field.•A smartphone controlled microfluidic electroporation system is presented.
Microscale flow-through electroporation at DC voltage has advantages in delivering small molecules. Yet, electroporation based on constant voltage are liable to generate electrolysis products which limits the voltage-operating window. Parallel on-chip 3D electrodes with close and uniform spacing are required to cut down voltage as well as provide enough electric field for electroporation. Here we present a simple electrode fabrication method based on capillary restriction valves in Z-axis to achieve parallel 3D electrodes with controllable electrode spacing in PDMS chips. With electrodes accurately placed in close range, a low voltage of only 1.5 V can generate enough electric field (>400 V/cm) to make cell membrane permeable. Squeeze flow is introduced to produce higher electric field (>800 V/cm) at a fixed voltage for more efficient electroporation. Benefit from the electrode fabrication method and application of squeeze flow, we develop a smartphone controlled microfluidic electroporation system which integrate functions of sample injection, pressure regulating, real-time observation and constant DC power supply. The system is used to electroporate two cell lines, showing a permeabilization percentage of 63% for HEK-293 cells and 58% for CHO-K1 cells with optimal parameters. Thus, the portable microfluidic system provides a cost-effective and user-friendly flow-through cell electroporation platform.</description><subject>3D microelectrodes</subject><subject>Cell electroporation</subject><subject>Cell lines</subject><subject>Cell membranes</subject><subject>Costs and Cost Analysis</subject><subject>Electric fields</subject><subject>Electric power supplies</subject><subject>Electrodes</subject><subject>Electrodes - economics</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Electroporation</subject><subject>Electroporation - economics</subject><subject>Electroporation - instrumentation</subject><subject>Fabrication</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Lab-On-A-Chip Devices - economics</subject><subject>Low voltage</subject><subject>Low-cost fabrication</subject><subject>Microfluidics</subject><subject>Portable system</subject><subject>Smartphone - economics</subject><subject>Smartphones</subject><subject>Stability</subject><subject>Three dimensional flow</subject><subject>Voltage</subject><issn>1567-5394</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1TAQhSMEoj_wCsgSGza5-N_OshQoSJXYtBI7K3EmxFdOHGyn1X0A3ruObgsSm648sr4zc3ROVSGCdwQT-XG_61wAD3aEaUcx3b4V1_JFdUq00rWQ9OfLMgupasEaflKdpbTHGGuixOvqhFGiGi7oafXnAvlwX9uQMkpTG_MyhhmQDXOOwXvo0RJibjsPKB1Shgnduzyi1to1thn8YUMHNxcwzLUd3YLYZ7RZK_oeEhpCRMN2Io8xrL9GZMH7J6DsbrML85vq1dD6BG8f3_Pq9uuXm8tv9fWPq--XF9e15ZjmmjcUN0qKputaQUkne80wlYLz4qehjEgGVmmmaANkGPpOUdVSZvuBW0o7zs6rD8e9Swy_V0jZTC5thtoZwpoMZUo1jaCSFfT9f-g-rHEu7gwVWHCiiZaF0kfKxpBShMEs0ZUYD4Zgs1Vl9uZfVWaryhyrKtJ3jwfWboL-r_CpmwJ8OgJQErlzEE2yDmYLvYslPdMH9_yVB7hAq7I</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Han, Chao</creator><creator>He, Xiwen</creator><creator>Wang, Jie</creator><creator>Gao, Lingeng</creator><creator>Yang, Guang</creator><creator>Li, Dongji</creator><creator>Wang, Shuying</creator><creator>Chen, Xiang</creator><creator>Peng, Zhihai</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202008</creationdate><title>A low-cost smartphone controlled portable system with accurately confined on-chip 3D electrodes for flow-through cell electroporation</title><author>Han, Chao ; He, Xiwen ; Wang, Jie ; Gao, Lingeng ; Yang, Guang ; Li, Dongji ; Wang, Shuying ; Chen, Xiang ; Peng, Zhihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-492097659bba521b6d83026544acc923163ec783729e1ffdb727a23cdf4c22b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D microelectrodes</topic><topic>Cell electroporation</topic><topic>Cell lines</topic><topic>Cell membranes</topic><topic>Costs and Cost Analysis</topic><topic>Electric fields</topic><topic>Electric power supplies</topic><topic>Electrodes</topic><topic>Electrodes - economics</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Electroporation</topic><topic>Electroporation - economics</topic><topic>Electroporation - instrumentation</topic><topic>Fabrication</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Lab-On-A-Chip Devices - economics</topic><topic>Low voltage</topic><topic>Low-cost fabrication</topic><topic>Microfluidics</topic><topic>Portable system</topic><topic>Smartphone - economics</topic><topic>Smartphones</topic><topic>Stability</topic><topic>Three dimensional flow</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Chao</creatorcontrib><creatorcontrib>He, Xiwen</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Gao, Lingeng</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Li, Dongji</creatorcontrib><creatorcontrib>Wang, Shuying</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Peng, Zhihai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Chao</au><au>He, Xiwen</au><au>Wang, Jie</au><au>Gao, Lingeng</au><au>Yang, Guang</au><au>Li, Dongji</au><au>Wang, Shuying</au><au>Chen, Xiang</au><au>Peng, Zhihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A low-cost smartphone controlled portable system with accurately confined on-chip 3D electrodes for flow-through cell electroporation</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2020-08</date><risdate>2020</risdate><volume>134</volume><spage>107486</spage><epage>107486</epage><pages>107486-107486</pages><artnum>107486</artnum><issn>1567-5394</issn><eissn>1878-562X</eissn><abstract>[Display omitted]
•3D electrodes with close and uniform electrode spacing are achieved.•Flow-through electroporation at a low DC voltage of 1.5 V is demonstrated.•Squeeze flow is introduced to produce higher electric field.•A smartphone controlled microfluidic electroporation system is presented.
Microscale flow-through electroporation at DC voltage has advantages in delivering small molecules. Yet, electroporation based on constant voltage are liable to generate electrolysis products which limits the voltage-operating window. Parallel on-chip 3D electrodes with close and uniform spacing are required to cut down voltage as well as provide enough electric field for electroporation. Here we present a simple electrode fabrication method based on capillary restriction valves in Z-axis to achieve parallel 3D electrodes with controllable electrode spacing in PDMS chips. With electrodes accurately placed in close range, a low voltage of only 1.5 V can generate enough electric field (>400 V/cm) to make cell membrane permeable. Squeeze flow is introduced to produce higher electric field (>800 V/cm) at a fixed voltage for more efficient electroporation. Benefit from the electrode fabrication method and application of squeeze flow, we develop a smartphone controlled microfluidic electroporation system which integrate functions of sample injection, pressure regulating, real-time observation and constant DC power supply. The system is used to electroporate two cell lines, showing a permeabilization percentage of 63% for HEK-293 cells and 58% for CHO-K1 cells with optimal parameters. Thus, the portable microfluidic system provides a cost-effective and user-friendly flow-through cell electroporation platform.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32179452</pmid><doi>10.1016/j.bioelechem.2020.107486</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-5394 |
ispartof | Bioelectrochemistry (Amsterdam, Netherlands), 2020-08, Vol.134, p.107486-107486, Article 107486 |
issn | 1567-5394 1878-562X |
language | eng |
recordid | cdi_proquest_miscellaneous_2377995263 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | 3D microelectrodes Cell electroporation Cell lines Cell membranes Costs and Cost Analysis Electric fields Electric power supplies Electrodes Electrodes - economics Electrolysis Electrolytic cells Electroporation Electroporation - economics Electroporation - instrumentation Fabrication HEK293 Cells Humans Lab-On-A-Chip Devices - economics Low voltage Low-cost fabrication Microfluidics Portable system Smartphone - economics Smartphones Stability Three dimensional flow Voltage |
title | A low-cost smartphone controlled portable system with accurately confined on-chip 3D electrodes for flow-through cell electroporation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20low-cost%20smartphone%20controlled%20portable%20system%20with%20accurately%20confined%20on-chip%203D%20electrodes%20for%20flow-through%20cell%20electroporation&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Han,%20Chao&rft.date=2020-08&rft.volume=134&rft.spage=107486&rft.epage=107486&rft.pages=107486-107486&rft.artnum=107486&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/j.bioelechem.2020.107486&rft_dat=%3Cproquest_cross%3E2505418186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505418186&rft_id=info:pmid/32179452&rft_els_id=S1567539419306425&rfr_iscdi=true |