Development and Evaluation of MM/GBSA Based on a Variable Dielectric GB Model for Predicting Protein–Ligand Binding Affinities
In structure-based drug design (SBDD), the molecular mechanics generalized Born surface area (MM/GBSA) approach has been widely used in ranking the binding affinity of small molecule ligands. However, an accurate estimation of protein–ligand binding affinity still remains a challenge due to the intr...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2020-11, Vol.60 (11), p.5353-5365 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5365 |
---|---|
container_issue | 11 |
container_start_page | 5353 |
container_title | Journal of chemical information and modeling |
container_volume | 60 |
creator | Wang, Ercheng Liu, Hui Wang, Junmei Weng, Gaoqi Sun, Huiyong Wang, Zhe Kang, Yu Hou, Tingjun |
description | In structure-based drug design (SBDD), the molecular mechanics generalized Born surface area (MM/GBSA) approach has been widely used in ranking the binding affinity of small molecule ligands. However, an accurate estimation of protein–ligand binding affinity still remains a challenge due to the intrinsic limitation of the standard generalized Born (GB) model used in MM/GBSA. In this study, we proposed and evaluated the MM/GBSA approach based on a variable dielectric generalized Born (VDGB) model using residue-type-based dielectric constants. In the VDGB model, different dielectric values were assigned for the three types of protein residues, and the magnitude of the dielectric constants for residue types follows this order: charged ≥ polar ≥ nonpolar. We found that MM/GBSA based on a VDGB model (MM/GBSAVDGB) with an optimal dielectric constant of 4.0 for the charged residues and 1.0 for the noncharged residues together with a net-charge-dependent dielectric value for ligands achieved better predictions as judged by Pearson’s correlation coefficient than the standard MM/GBSA with a uniform solute dielectric constant of 4.0 for the training set of 130 protein–ligand complexes. The prediction on the test set with 165 protein–ligand complexes also validated the better performance of MM/GBSAVDGB. Moreover, this method exhibited potential in predicting the relative binding free energies for multiple ligands against the same target. Furthermore, we found that rational truncation of protein residues far from the binding site can significantly speed up the MM/GBSAVDGB calculations, while it almost does not influence the prediction accuracy. Therefore, it is feasible to implement the system-truncated MM/GBSAVDGB as a scoring function for SBDD. |
doi_str_mv | 10.1021/acs.jcim.0c00024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2377685735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377685735</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-3e91ea5682ed1b9dead15b6498092d418e5000c7cbf93ffe0bdfb8b946cb51583</originalsourceid><addsrcrecordid>eNp1kc9uEzEQxi0EoqVw54QsceFAUnvX9q6PSVsCUiKQ-CNultceV4527dTercSt78Ab8iQ4JOGAxGlG49_3jTUfQi8pmVNS0Utt8nxr_DAnhhBSsUfonHImZ1KQ749PPZfiDD3LeUtIXUtRPUVndUUb3tTsHD1cwz30cTdAGLEOFt_c637So48BR4c3m8vV8vMCL3UGi8tM4286ed31gK899GDG5A1eLfEmWuixiwl_SmC9GX24LW0cwYdfDz_X_nbvvvTB7h8WzvngRw_5OXridJ_hxbFeoK_vbr5cvZ-tP64-XC3WM10LNs5qkBQ0F20FlnbSgraUd4LJlsjKMtoCLxcwjemcrJ0D0lnXtZ1kwnSc8ra-QG8OvrsU7ybIoxp8NtD3OkCcsqrqphFtOQov6Ot_0G2cUii_UxUTgvCWcVkocqBMijkncGqX_KDTD0WJ2qejSjpqn446plMkr47GUzeA_Ss4xVGAtwfgj_S09L9-vwFz0pvq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466058459</pqid></control><display><type>article</type><title>Development and Evaluation of MM/GBSA Based on a Variable Dielectric GB Model for Predicting Protein–Ligand Binding Affinities</title><source>American Chemical Society Journals</source><creator>Wang, Ercheng ; Liu, Hui ; Wang, Junmei ; Weng, Gaoqi ; Sun, Huiyong ; Wang, Zhe ; Kang, Yu ; Hou, Tingjun</creator><creatorcontrib>Wang, Ercheng ; Liu, Hui ; Wang, Junmei ; Weng, Gaoqi ; Sun, Huiyong ; Wang, Zhe ; Kang, Yu ; Hou, Tingjun</creatorcontrib><description>In structure-based drug design (SBDD), the molecular mechanics generalized Born surface area (MM/GBSA) approach has been widely used in ranking the binding affinity of small molecule ligands. However, an accurate estimation of protein–ligand binding affinity still remains a challenge due to the intrinsic limitation of the standard generalized Born (GB) model used in MM/GBSA. In this study, we proposed and evaluated the MM/GBSA approach based on a variable dielectric generalized Born (VDGB) model using residue-type-based dielectric constants. In the VDGB model, different dielectric values were assigned for the three types of protein residues, and the magnitude of the dielectric constants for residue types follows this order: charged ≥ polar ≥ nonpolar. We found that MM/GBSA based on a VDGB model (MM/GBSAVDGB) with an optimal dielectric constant of 4.0 for the charged residues and 1.0 for the noncharged residues together with a net-charge-dependent dielectric value for ligands achieved better predictions as judged by Pearson’s correlation coefficient than the standard MM/GBSA with a uniform solute dielectric constant of 4.0 for the training set of 130 protein–ligand complexes. The prediction on the test set with 165 protein–ligand complexes also validated the better performance of MM/GBSAVDGB. Moreover, this method exhibited potential in predicting the relative binding free energies for multiple ligands against the same target. Furthermore, we found that rational truncation of protein residues far from the binding site can significantly speed up the MM/GBSAVDGB calculations, while it almost does not influence the prediction accuracy. Therefore, it is feasible to implement the system-truncated MM/GBSAVDGB as a scoring function for SBDD.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.0c00024</identifier><identifier>PMID: 32175734</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Affinity ; Binding sites ; Constants ; Coordination compounds ; Correlation coefficients ; Ligands ; Mathematical analysis ; Molecular structure ; Permittivity ; Proteins ; Residues</subject><ispartof>Journal of chemical information and modeling, 2020-11, Vol.60 (11), p.5353-5365</ispartof><rights>Copyright American Chemical Society Nov 23, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-3e91ea5682ed1b9dead15b6498092d418e5000c7cbf93ffe0bdfb8b946cb51583</citedby><cites>FETCH-LOGICAL-a364t-3e91ea5682ed1b9dead15b6498092d418e5000c7cbf93ffe0bdfb8b946cb51583</cites><orcidid>0000-0001-7227-2580 ; 0000-0002-1267-2475 ; 0000-0002-7107-7481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.0c00024$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.0c00024$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32175734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ercheng</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Wang, Junmei</creatorcontrib><creatorcontrib>Weng, Gaoqi</creatorcontrib><creatorcontrib>Sun, Huiyong</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Kang, Yu</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><title>Development and Evaluation of MM/GBSA Based on a Variable Dielectric GB Model for Predicting Protein–Ligand Binding Affinities</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>In structure-based drug design (SBDD), the molecular mechanics generalized Born surface area (MM/GBSA) approach has been widely used in ranking the binding affinity of small molecule ligands. However, an accurate estimation of protein–ligand binding affinity still remains a challenge due to the intrinsic limitation of the standard generalized Born (GB) model used in MM/GBSA. In this study, we proposed and evaluated the MM/GBSA approach based on a variable dielectric generalized Born (VDGB) model using residue-type-based dielectric constants. In the VDGB model, different dielectric values were assigned for the three types of protein residues, and the magnitude of the dielectric constants for residue types follows this order: charged ≥ polar ≥ nonpolar. We found that MM/GBSA based on a VDGB model (MM/GBSAVDGB) with an optimal dielectric constant of 4.0 for the charged residues and 1.0 for the noncharged residues together with a net-charge-dependent dielectric value for ligands achieved better predictions as judged by Pearson’s correlation coefficient than the standard MM/GBSA with a uniform solute dielectric constant of 4.0 for the training set of 130 protein–ligand complexes. The prediction on the test set with 165 protein–ligand complexes also validated the better performance of MM/GBSAVDGB. Moreover, this method exhibited potential in predicting the relative binding free energies for multiple ligands against the same target. Furthermore, we found that rational truncation of protein residues far from the binding site can significantly speed up the MM/GBSAVDGB calculations, while it almost does not influence the prediction accuracy. Therefore, it is feasible to implement the system-truncated MM/GBSAVDGB as a scoring function for SBDD.</description><subject>Affinity</subject><subject>Binding sites</subject><subject>Constants</subject><subject>Coordination compounds</subject><subject>Correlation coefficients</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Molecular structure</subject><subject>Permittivity</subject><subject>Proteins</subject><subject>Residues</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc9uEzEQxi0EoqVw54QsceFAUnvX9q6PSVsCUiKQ-CNultceV4527dTercSt78Ab8iQ4JOGAxGlG49_3jTUfQi8pmVNS0Utt8nxr_DAnhhBSsUfonHImZ1KQ749PPZfiDD3LeUtIXUtRPUVndUUb3tTsHD1cwz30cTdAGLEOFt_c637So48BR4c3m8vV8vMCL3UGi8tM4286ed31gK899GDG5A1eLfEmWuixiwl_SmC9GX24LW0cwYdfDz_X_nbvvvTB7h8WzvngRw_5OXridJ_hxbFeoK_vbr5cvZ-tP64-XC3WM10LNs5qkBQ0F20FlnbSgraUd4LJlsjKMtoCLxcwjemcrJ0D0lnXtZ1kwnSc8ra-QG8OvrsU7ybIoxp8NtD3OkCcsqrqphFtOQov6Ot_0G2cUii_UxUTgvCWcVkocqBMijkncGqX_KDTD0WJ2qejSjpqn446plMkr47GUzeA_Ss4xVGAtwfgj_S09L9-vwFz0pvq</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Wang, Ercheng</creator><creator>Liu, Hui</creator><creator>Wang, Junmei</creator><creator>Weng, Gaoqi</creator><creator>Sun, Huiyong</creator><creator>Wang, Zhe</creator><creator>Kang, Yu</creator><creator>Hou, Tingjun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7227-2580</orcidid><orcidid>https://orcid.org/0000-0002-1267-2475</orcidid><orcidid>https://orcid.org/0000-0002-7107-7481</orcidid></search><sort><creationdate>20201123</creationdate><title>Development and Evaluation of MM/GBSA Based on a Variable Dielectric GB Model for Predicting Protein–Ligand Binding Affinities</title><author>Wang, Ercheng ; Liu, Hui ; Wang, Junmei ; Weng, Gaoqi ; Sun, Huiyong ; Wang, Zhe ; Kang, Yu ; Hou, Tingjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-3e91ea5682ed1b9dead15b6498092d418e5000c7cbf93ffe0bdfb8b946cb51583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Binding sites</topic><topic>Constants</topic><topic>Coordination compounds</topic><topic>Correlation coefficients</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Molecular structure</topic><topic>Permittivity</topic><topic>Proteins</topic><topic>Residues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ercheng</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Wang, Junmei</creatorcontrib><creatorcontrib>Weng, Gaoqi</creatorcontrib><creatorcontrib>Sun, Huiyong</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Kang, Yu</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ercheng</au><au>Liu, Hui</au><au>Wang, Junmei</au><au>Weng, Gaoqi</au><au>Sun, Huiyong</au><au>Wang, Zhe</au><au>Kang, Yu</au><au>Hou, Tingjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Evaluation of MM/GBSA Based on a Variable Dielectric GB Model for Predicting Protein–Ligand Binding Affinities</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2020-11-23</date><risdate>2020</risdate><volume>60</volume><issue>11</issue><spage>5353</spage><epage>5365</epage><pages>5353-5365</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>In structure-based drug design (SBDD), the molecular mechanics generalized Born surface area (MM/GBSA) approach has been widely used in ranking the binding affinity of small molecule ligands. However, an accurate estimation of protein–ligand binding affinity still remains a challenge due to the intrinsic limitation of the standard generalized Born (GB) model used in MM/GBSA. In this study, we proposed and evaluated the MM/GBSA approach based on a variable dielectric generalized Born (VDGB) model using residue-type-based dielectric constants. In the VDGB model, different dielectric values were assigned for the three types of protein residues, and the magnitude of the dielectric constants for residue types follows this order: charged ≥ polar ≥ nonpolar. We found that MM/GBSA based on a VDGB model (MM/GBSAVDGB) with an optimal dielectric constant of 4.0 for the charged residues and 1.0 for the noncharged residues together with a net-charge-dependent dielectric value for ligands achieved better predictions as judged by Pearson’s correlation coefficient than the standard MM/GBSA with a uniform solute dielectric constant of 4.0 for the training set of 130 protein–ligand complexes. The prediction on the test set with 165 protein–ligand complexes also validated the better performance of MM/GBSAVDGB. Moreover, this method exhibited potential in predicting the relative binding free energies for multiple ligands against the same target. Furthermore, we found that rational truncation of protein residues far from the binding site can significantly speed up the MM/GBSAVDGB calculations, while it almost does not influence the prediction accuracy. Therefore, it is feasible to implement the system-truncated MM/GBSAVDGB as a scoring function for SBDD.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32175734</pmid><doi>10.1021/acs.jcim.0c00024</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7227-2580</orcidid><orcidid>https://orcid.org/0000-0002-1267-2475</orcidid><orcidid>https://orcid.org/0000-0002-7107-7481</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2020-11, Vol.60 (11), p.5353-5365 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2377685735 |
source | American Chemical Society Journals |
subjects | Affinity Binding sites Constants Coordination compounds Correlation coefficients Ligands Mathematical analysis Molecular structure Permittivity Proteins Residues |
title | Development and Evaluation of MM/GBSA Based on a Variable Dielectric GB Model for Predicting Protein–Ligand Binding Affinities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Evaluation%20of%20MM/GBSA%20Based%20on%20a%20Variable%20Dielectric%20GB%20Model%20for%20Predicting%20Protein%E2%80%93Ligand%20Binding%20Affinities&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Wang,%20Ercheng&rft.date=2020-11-23&rft.volume=60&rft.issue=11&rft.spage=5353&rft.epage=5365&rft.pages=5353-5365&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.0c00024&rft_dat=%3Cproquest_cross%3E2377685735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466058459&rft_id=info:pmid/32175734&rfr_iscdi=true |