M2IA: a web server for microbiome and metabolome integrative analysis

Abstract Motivation Microbiome–metabolome association studies have experienced exponential growth for an in-depth understanding of the impact of microbiota on human health over the last decade. However, analyzing the resulting multi-omics data and their correlations remains a significant challenge d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-06, Vol.36 (11), p.3493-3498
Hauptverfasser: Ni, Yan, Yu, Gang, Chen, Huan, Deng, Yongqiong, Wells, Philippa M, Steves, Claire J, Ju, Feng, Fu, Junfen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3498
container_issue 11
container_start_page 3493
container_title Bioinformatics
container_volume 36
creator Ni, Yan
Yu, Gang
Chen, Huan
Deng, Yongqiong
Wells, Philippa M
Steves, Claire J
Ju, Feng
Fu, Junfen
description Abstract Motivation Microbiome–metabolome association studies have experienced exponential growth for an in-depth understanding of the impact of microbiota on human health over the last decade. However, analyzing the resulting multi-omics data and their correlations remains a significant challenge due to the lack of a comprehensive computational tool that can facilitate data integration and interpretation. In this study, an automated microbiome and metabolome integrative analysis pipeline (M2IA) has been developed to meet the urgent needs for tools that can effectively integrate microbiome and metabolome data to derive biological insights. Results M2IA streamlines the integrative data analysis between metabolome and microbiome, from data preprocessing, univariate and multivariate statistical analyses, advanced functional analysis for biological interpretation, to a summary report. The functionality of M2IA was demonstrated using TwinsUK cohort datasets consisting of 1116 fecal metabolites and 16s rRNA microbiome from 786 individuals. Moreover, two important metabolic pathways, i.e. benzoate degradation and phosphotransferase system, were identified to be closely associated with obesity. Availability and implementation M2IA is public available at http://m2ia.met-bioinformatics.cn. Contact yanni617@zju.edu.cn or fjf68@zju.edu.cn Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btaa188
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2377685731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa188</oup_id><sourcerecordid>2377685731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-32f7356718d5fa96afc6a0b76ae03639d8fb7d6d1700e620d109cfad086885763</originalsourceid><addsrcrecordid>eNqNkDFPwzAQhS0EoqXwF6qMLKF2nNgOW1UVqFTEAnN0jm1klMTFTor673HUgsTGdHe6797TPYTmBN8RXNKFtM52xvkWeluHhewBiBBnaEpyhtMMF-V57CnjaS4wnaCrED4wLkie55doQjPCWVaIKVo_Z5vlfQLJl5ZJ0H6vfRJlk9bW3kWTVifQqaTVPUjXjKPtev3uo-1-XEFzCDZcowsDTdA3pzpDbw_r19VTun153KyW27SmlPQpzQynBeNEqMJAycDUDLDkDDSmjJZKGMkVU4RjrFmGVXy1NqCwYEIUnNEZuj3q7rz7HHToq9aGWjcNdNoNocoo5yySlESUHdH4Rwhem2rnbQv-UBFcjRFWfyOsThHGw_nJY5CtVr9nP5lFgBwBN-z-K_oNJ4qDug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377685731</pqid></control><display><type>article</type><title>M2IA: a web server for microbiome and metabolome integrative analysis</title><source>Oxford Journals Open Access Collection</source><creator>Ni, Yan ; Yu, Gang ; Chen, Huan ; Deng, Yongqiong ; Wells, Philippa M ; Steves, Claire J ; Ju, Feng ; Fu, Junfen</creator><creatorcontrib>Ni, Yan ; Yu, Gang ; Chen, Huan ; Deng, Yongqiong ; Wells, Philippa M ; Steves, Claire J ; Ju, Feng ; Fu, Junfen</creatorcontrib><description>Abstract Motivation Microbiome–metabolome association studies have experienced exponential growth for an in-depth understanding of the impact of microbiota on human health over the last decade. However, analyzing the resulting multi-omics data and their correlations remains a significant challenge due to the lack of a comprehensive computational tool that can facilitate data integration and interpretation. In this study, an automated microbiome and metabolome integrative analysis pipeline (M2IA) has been developed to meet the urgent needs for tools that can effectively integrate microbiome and metabolome data to derive biological insights. Results M2IA streamlines the integrative data analysis between metabolome and microbiome, from data preprocessing, univariate and multivariate statistical analyses, advanced functional analysis for biological interpretation, to a summary report. The functionality of M2IA was demonstrated using TwinsUK cohort datasets consisting of 1116 fecal metabolites and 16s rRNA microbiome from 786 individuals. Moreover, two important metabolic pathways, i.e. benzoate degradation and phosphotransferase system, were identified to be closely associated with obesity. Availability and implementation M2IA is public available at http://m2ia.met-bioinformatics.cn. Contact yanni617@zju.edu.cn or fjf68@zju.edu.cn Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa188</identifier><identifier>PMID: 32176258</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Bioinformatics, 2020-06, Vol.36 (11), p.3493-3498</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>The Author(s) (2020). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-32f7356718d5fa96afc6a0b76ae03639d8fb7d6d1700e620d109cfad086885763</citedby><cites>FETCH-LOGICAL-c331t-32f7356718d5fa96afc6a0b76ae03639d8fb7d6d1700e620d109cfad086885763</cites><orcidid>0000-0003-1779-7266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btaa188$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32176258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Yan</creatorcontrib><creatorcontrib>Yu, Gang</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><creatorcontrib>Deng, Yongqiong</creatorcontrib><creatorcontrib>Wells, Philippa M</creatorcontrib><creatorcontrib>Steves, Claire J</creatorcontrib><creatorcontrib>Ju, Feng</creatorcontrib><creatorcontrib>Fu, Junfen</creatorcontrib><title>M2IA: a web server for microbiome and metabolome integrative analysis</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Microbiome–metabolome association studies have experienced exponential growth for an in-depth understanding of the impact of microbiota on human health over the last decade. However, analyzing the resulting multi-omics data and their correlations remains a significant challenge due to the lack of a comprehensive computational tool that can facilitate data integration and interpretation. In this study, an automated microbiome and metabolome integrative analysis pipeline (M2IA) has been developed to meet the urgent needs for tools that can effectively integrate microbiome and metabolome data to derive biological insights. Results M2IA streamlines the integrative data analysis between metabolome and microbiome, from data preprocessing, univariate and multivariate statistical analyses, advanced functional analysis for biological interpretation, to a summary report. The functionality of M2IA was demonstrated using TwinsUK cohort datasets consisting of 1116 fecal metabolites and 16s rRNA microbiome from 786 individuals. Moreover, two important metabolic pathways, i.e. benzoate degradation and phosphotransferase system, were identified to be closely associated with obesity. Availability and implementation M2IA is public available at http://m2ia.met-bioinformatics.cn. Contact yanni617@zju.edu.cn or fjf68@zju.edu.cn Supplementary information Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkDFPwzAQhS0EoqXwF6qMLKF2nNgOW1UVqFTEAnN0jm1klMTFTor673HUgsTGdHe6797TPYTmBN8RXNKFtM52xvkWeluHhewBiBBnaEpyhtMMF-V57CnjaS4wnaCrED4wLkie55doQjPCWVaIKVo_Z5vlfQLJl5ZJ0H6vfRJlk9bW3kWTVifQqaTVPUjXjKPtev3uo-1-XEFzCDZcowsDTdA3pzpDbw_r19VTun153KyW27SmlPQpzQynBeNEqMJAycDUDLDkDDSmjJZKGMkVU4RjrFmGVXy1NqCwYEIUnNEZuj3q7rz7HHToq9aGWjcNdNoNocoo5yySlESUHdH4Rwhem2rnbQv-UBFcjRFWfyOsThHGw_nJY5CtVr9nP5lFgBwBN-z-K_oNJ4qDug</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Ni, Yan</creator><creator>Yu, Gang</creator><creator>Chen, Huan</creator><creator>Deng, Yongqiong</creator><creator>Wells, Philippa M</creator><creator>Steves, Claire J</creator><creator>Ju, Feng</creator><creator>Fu, Junfen</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1779-7266</orcidid></search><sort><creationdate>20200601</creationdate><title>M2IA: a web server for microbiome and metabolome integrative analysis</title><author>Ni, Yan ; Yu, Gang ; Chen, Huan ; Deng, Yongqiong ; Wells, Philippa M ; Steves, Claire J ; Ju, Feng ; Fu, Junfen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-32f7356718d5fa96afc6a0b76ae03639d8fb7d6d1700e620d109cfad086885763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Yan</creatorcontrib><creatorcontrib>Yu, Gang</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><creatorcontrib>Deng, Yongqiong</creatorcontrib><creatorcontrib>Wells, Philippa M</creatorcontrib><creatorcontrib>Steves, Claire J</creatorcontrib><creatorcontrib>Ju, Feng</creatorcontrib><creatorcontrib>Fu, Junfen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ni, Yan</au><au>Yu, Gang</au><au>Chen, Huan</au><au>Deng, Yongqiong</au><au>Wells, Philippa M</au><au>Steves, Claire J</au><au>Ju, Feng</au><au>Fu, Junfen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M2IA: a web server for microbiome and metabolome integrative analysis</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>36</volume><issue>11</issue><spage>3493</spage><epage>3498</epage><pages>3493-3498</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Microbiome–metabolome association studies have experienced exponential growth for an in-depth understanding of the impact of microbiota on human health over the last decade. However, analyzing the resulting multi-omics data and their correlations remains a significant challenge due to the lack of a comprehensive computational tool that can facilitate data integration and interpretation. In this study, an automated microbiome and metabolome integrative analysis pipeline (M2IA) has been developed to meet the urgent needs for tools that can effectively integrate microbiome and metabolome data to derive biological insights. Results M2IA streamlines the integrative data analysis between metabolome and microbiome, from data preprocessing, univariate and multivariate statistical analyses, advanced functional analysis for biological interpretation, to a summary report. The functionality of M2IA was demonstrated using TwinsUK cohort datasets consisting of 1116 fecal metabolites and 16s rRNA microbiome from 786 individuals. Moreover, two important metabolic pathways, i.e. benzoate degradation and phosphotransferase system, were identified to be closely associated with obesity. Availability and implementation M2IA is public available at http://m2ia.met-bioinformatics.cn. Contact yanni617@zju.edu.cn or fjf68@zju.edu.cn Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32176258</pmid><doi>10.1093/bioinformatics/btaa188</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1779-7266</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2020-06, Vol.36 (11), p.3493-3498
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2377685731
source Oxford Journals Open Access Collection
title M2IA: a web server for microbiome and metabolome integrative analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M2IA:%20a%20web%20server%20for%20microbiome%20and%20metabolome%20integrative%20analysis&rft.jtitle=Bioinformatics&rft.au=Ni,%20Yan&rft.date=2020-06-01&rft.volume=36&rft.issue=11&rft.spage=3493&rft.epage=3498&rft.pages=3493-3498&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa188&rft_dat=%3Cproquest_TOX%3E2377685731%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377685731&rft_id=info:pmid/32176258&rft_oup_id=10.1093/bioinformatics/btaa188&rfr_iscdi=true