Seeking new, highly effective thermoelectrics

Operating across a wide temperature range is a priority for thermoelectric materials Thermoelectric technology can directly and reversibly convert heat to electrical energy. Although thermoelectric energy conversion will never be as efficient as a steam engine ( 1 ), improving thermoelectric perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-03, Vol.367 (6483), p.1196-1197
Hauptverfasser: Xiao, Yu, Zhao, Li-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1197
container_issue 6483
container_start_page 1196
container_title Science (American Association for the Advancement of Science)
container_volume 367
creator Xiao, Yu
Zhao, Li-Dong
description Operating across a wide temperature range is a priority for thermoelectric materials Thermoelectric technology can directly and reversibly convert heat to electrical energy. Although thermoelectric energy conversion will never be as efficient as a steam engine ( 1 ), improving thermoelectric performance can potentially make a technology commercially competitive. Thermoelectric conversion efficiency is estimated by the so-called dimensionless figure of merit, ZT = S 2 σ T /κ, where S , σ, T , and κ denote the Seebeck coefficient, electrical conductivity, working temperature, and thermal conductivity, respectfully . These parameters are strongly coupled, and improving the final ZT is challenging as a result. Strategies for boosting thermoelectric performance include nanostructuring, band engineering, nanomagnetic compositing, high-throughput screening, and others ( 2 ). Many of these strategies create a high ZT in a narrow range of temperatures, limiting the overall energy conversion. Finding materials with wider operating temperature ranges may require rethinking development strategies.
doi_str_mv 10.1126/science.aaz9426
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2377343680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376807575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-42b9e3e51486ddd1f9e52fc0a70dd1a8c2cb51e955c8ca22d710ff6f6ee92b4f3</originalsourceid><addsrcrecordid>eNpdkLtPwzAQhy0EoqUws6FILAyk9SN24hFVvKRKDMAcOc65dcmj2ElR-etx1cDAdDrddz_dfQhdEjwlhIqZ1xYaDVOlvmVCxREaEyx5LClmx2iMMRNxhlM-QmferzEOM8lO0YhRIjhP6RjFrwAftllGDXzdRiu7XFW7CIwB3dktRN0KXN1CFVpntT9HJ0ZVHi6GOkHvD_dv86d48fL4PL9bxDokd3FCCwkMOEkyUZYlMRI4NRqrFIdOZZrqghOQnOtMK0rLlGBjhBEAkhaJYRN0c8jduPazB9_ltfUaqko10PY-pyxNWcJEhgN6_Q9dt71rwnV7Suy_T3mgZgdKu9Z7BybfOFsrt8sJzvcm88FkPpgMG1dDbl_UUP7xv-rYDzV6cJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376807575</pqid></control><display><type>article</type><title>Seeking new, highly effective thermoelectrics</title><source>American Association for the Advancement of Science</source><creator>Xiao, Yu ; Zhao, Li-Dong</creator><creatorcontrib>Xiao, Yu ; Zhao, Li-Dong</creatorcontrib><description>Operating across a wide temperature range is a priority for thermoelectric materials Thermoelectric technology can directly and reversibly convert heat to electrical energy. Although thermoelectric energy conversion will never be as efficient as a steam engine ( 1 ), improving thermoelectric performance can potentially make a technology commercially competitive. Thermoelectric conversion efficiency is estimated by the so-called dimensionless figure of merit, ZT = S 2 σ T /κ, where S , σ, T , and κ denote the Seebeck coefficient, electrical conductivity, working temperature, and thermal conductivity, respectfully . These parameters are strongly coupled, and improving the final ZT is challenging as a result. Strategies for boosting thermoelectric performance include nanostructuring, band engineering, nanomagnetic compositing, high-throughput screening, and others ( 2 ). Many of these strategies create a high ZT in a narrow range of temperatures, limiting the overall energy conversion. Finding materials with wider operating temperature ranges may require rethinking development strategies.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaz9426</identifier><identifier>PMID: 32165572</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Electrical conductivity ; Electrical resistivity ; Energy ; Energy conversion ; Figure of merit ; High-throughput screening ; Operating temperature ; Seebeck effect ; Steam engines ; Technology ; Temperature requirements ; Thermal conductivity ; Thermoelectricity</subject><ispartof>Science (American Association for the Advancement of Science), 2020-03, Vol.367 (6483), p.1196-1197</ispartof><rights>Copyright © 2020, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-42b9e3e51486ddd1f9e52fc0a70dd1a8c2cb51e955c8ca22d710ff6f6ee92b4f3</citedby><cites>FETCH-LOGICAL-c321t-42b9e3e51486ddd1f9e52fc0a70dd1a8c2cb51e955c8ca22d710ff6f6ee92b4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2885,2886,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32165572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Yu</creatorcontrib><creatorcontrib>Zhao, Li-Dong</creatorcontrib><title>Seeking new, highly effective thermoelectrics</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Operating across a wide temperature range is a priority for thermoelectric materials Thermoelectric technology can directly and reversibly convert heat to electrical energy. Although thermoelectric energy conversion will never be as efficient as a steam engine ( 1 ), improving thermoelectric performance can potentially make a technology commercially competitive. Thermoelectric conversion efficiency is estimated by the so-called dimensionless figure of merit, ZT = S 2 σ T /κ, where S , σ, T , and κ denote the Seebeck coefficient, electrical conductivity, working temperature, and thermal conductivity, respectfully . These parameters are strongly coupled, and improving the final ZT is challenging as a result. Strategies for boosting thermoelectric performance include nanostructuring, band engineering, nanomagnetic compositing, high-throughput screening, and others ( 2 ). Many of these strategies create a high ZT in a narrow range of temperatures, limiting the overall energy conversion. Finding materials with wider operating temperature ranges may require rethinking development strategies.</description><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Figure of merit</subject><subject>High-throughput screening</subject><subject>Operating temperature</subject><subject>Seebeck effect</subject><subject>Steam engines</subject><subject>Technology</subject><subject>Temperature requirements</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkLtPwzAQhy0EoqUws6FILAyk9SN24hFVvKRKDMAcOc65dcmj2ElR-etx1cDAdDrddz_dfQhdEjwlhIqZ1xYaDVOlvmVCxREaEyx5LClmx2iMMRNxhlM-QmferzEOM8lO0YhRIjhP6RjFrwAftllGDXzdRiu7XFW7CIwB3dktRN0KXN1CFVpntT9HJ0ZVHi6GOkHvD_dv86d48fL4PL9bxDokd3FCCwkMOEkyUZYlMRI4NRqrFIdOZZrqghOQnOtMK0rLlGBjhBEAkhaJYRN0c8jduPazB9_ltfUaqko10PY-pyxNWcJEhgN6_Q9dt71rwnV7Suy_T3mgZgdKu9Z7BybfOFsrt8sJzvcm88FkPpgMG1dDbl_UUP7xv-rYDzV6cJc</recordid><startdate>20200313</startdate><enddate>20200313</enddate><creator>Xiao, Yu</creator><creator>Zhao, Li-Dong</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20200313</creationdate><title>Seeking new, highly effective thermoelectrics</title><author>Xiao, Yu ; Zhao, Li-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-42b9e3e51486ddd1f9e52fc0a70dd1a8c2cb51e955c8ca22d710ff6f6ee92b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Figure of merit</topic><topic>High-throughput screening</topic><topic>Operating temperature</topic><topic>Seebeck effect</topic><topic>Steam engines</topic><topic>Technology</topic><topic>Temperature requirements</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yu</creatorcontrib><creatorcontrib>Zhao, Li-Dong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yu</au><au>Zhao, Li-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seeking new, highly effective thermoelectrics</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-03-13</date><risdate>2020</risdate><volume>367</volume><issue>6483</issue><spage>1196</spage><epage>1197</epage><pages>1196-1197</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Operating across a wide temperature range is a priority for thermoelectric materials Thermoelectric technology can directly and reversibly convert heat to electrical energy. Although thermoelectric energy conversion will never be as efficient as a steam engine ( 1 ), improving thermoelectric performance can potentially make a technology commercially competitive. Thermoelectric conversion efficiency is estimated by the so-called dimensionless figure of merit, ZT = S 2 σ T /κ, where S , σ, T , and κ denote the Seebeck coefficient, electrical conductivity, working temperature, and thermal conductivity, respectfully . These parameters are strongly coupled, and improving the final ZT is challenging as a result. Strategies for boosting thermoelectric performance include nanostructuring, band engineering, nanomagnetic compositing, high-throughput screening, and others ( 2 ). Many of these strategies create a high ZT in a narrow range of temperatures, limiting the overall energy conversion. Finding materials with wider operating temperature ranges may require rethinking development strategies.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32165572</pmid><doi>10.1126/science.aaz9426</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-03, Vol.367 (6483), p.1196-1197
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2377343680
source American Association for the Advancement of Science
subjects Electrical conductivity
Electrical resistivity
Energy
Energy conversion
Figure of merit
High-throughput screening
Operating temperature
Seebeck effect
Steam engines
Technology
Temperature requirements
Thermal conductivity
Thermoelectricity
title Seeking new, highly effective thermoelectrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seeking%20new,%20highly%20effective%20thermoelectrics&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Xiao,%20Yu&rft.date=2020-03-13&rft.volume=367&rft.issue=6483&rft.spage=1196&rft.epage=1197&rft.pages=1196-1197&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaz9426&rft_dat=%3Cproquest_cross%3E2376807575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376807575&rft_id=info:pmid/32165572&rfr_iscdi=true