Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial
Objective To enhance the positive predictive value (PPV) of chest digital tomosynthesis (DTS) in the lung cancer detection with the analysis of radiomics features. Method The investigation was carried out within the SOS clinical trial (NCT03645018) for lung cancer screening with DTS. Lung nodules we...
Gespeichert in:
Veröffentlicht in: | European radiology 2020-07, Vol.30 (7), p.4134-4140 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4140 |
---|---|
container_issue | 7 |
container_start_page | 4134 |
container_title | European radiology |
container_volume | 30 |
creator | Chauvie, Stéphane De Maggi, Adriano Baralis, Ilaria Dalmasso, Federico Berchialla, Paola Priotto, Roberto Violino, Paolo Mazza, Federico Melloni, Giulio Grosso, Maurizio |
description | Objective
To enhance the positive predictive value (PPV) of chest digital tomosynthesis (DTS) in the lung cancer detection with the analysis of radiomics features.
Method
The investigation was carried out within the SOS clinical trial (NCT03645018) for lung cancer screening with DTS. Lung nodules were identified by visual analysis and then classified using the diameter and the radiological aspect of the nodule following lung-RADS. Haralick texture features were extracted from the segmented nodules. Both semantic variables and radiomics features were used to build a predictive model using logistic regression on a subset of variables selected with backward feature selection and using two machine learning: a Random Forest and a neural network with the whole subset of variables. The methods were applied to a train set and validated on a test set where diagnostic accuracy metrics were calculated.
Results
Binary visual analysis had a good sensitivity (0.95) but a low PPV (0.14). Lung-RADS classification increased the PPV (0.19) but with an unacceptable low sensitivity (0.65). Logistic regression showed a mildly increased PPV (0.29) but a lower sensitivity (0.20). Random Forest demonstrated a moderate PPV (0.40) but with a low sensitivity (0.30). Neural network demonstrated to be the best predictor with a high PPV (0.95) and a high sensitivity (0.90).
Conclusions
The neural network demonstrated the best PPV. The use of visual analysis along with neural network could help radiologists to reduce the number of false positive in DTS.
Key Points
•
We investigated several approaches to enhance the positive predictive value of chest digital tomosynthesis in the lung cancer detection.
•
Neural network demonstrated to be the best predictor with a nearly perfect PPV.
•
Neural network could help radiologists to reduce the number of false positive in DTS. |
doi_str_mv | 10.1007/s00330-020-06783-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2377343053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414909573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-3da184870822799dd6749e67c71d777b42df7e82700a61eef7a3012c466c01723</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIkPgB1ggS2zYNJQfaXcvo4iXFCmLwNpy7OqZinrswXYnSj6Gb8WTCSCxYGG5ZJ97q-zL2GsB7wWA-VAAlIIOZFu9GVR3_4SthFayEzDop2wFoxo6M476iL0o5RoARqHNc3akpOh7PYoV-3maK03kyc2cYsV5pjVGj9zFwLMLlLbkC8e4cfvTukG-S4Uq3bQiYyD_UN64eUGeJh5oTbV5-Q2WymvapnIXm6pQ4VPKfF7imvu9V-YBKzZ5ivyW6oYiv7y45H6mSL451NxmesmeTW4u-OpxP2bfP338dvalO7_4_PXs9LzzWoy1U8GJQQ8GBinbe0PojR6xN96IYIy50jJMBgdpAFwvECfjFAjpdd97EEaqY_bu4LvL6cfSRrdbKr79houYlmKlMkZpBSeqoW__Qa_TkmObzkot9AjjidlT8kD5nErJONldpq3Ld1aA3adnD-nZlp59SM_eN9GbR-vlaovhj-R3XA1QB6C0q7jG_Lf3f2x_AfdUp9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414909573</pqid></control><display><type>article</type><title>Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chauvie, Stéphane ; De Maggi, Adriano ; Baralis, Ilaria ; Dalmasso, Federico ; Berchialla, Paola ; Priotto, Roberto ; Violino, Paolo ; Mazza, Federico ; Melloni, Giulio ; Grosso, Maurizio</creator><creatorcontrib>Chauvie, Stéphane ; De Maggi, Adriano ; Baralis, Ilaria ; Dalmasso, Federico ; Berchialla, Paola ; Priotto, Roberto ; Violino, Paolo ; Mazza, Federico ; Melloni, Giulio ; Grosso, Maurizio ; SOS Study team ; SOS Study team</creatorcontrib><description>Objective
To enhance the positive predictive value (PPV) of chest digital tomosynthesis (DTS) in the lung cancer detection with the analysis of radiomics features.
Method
The investigation was carried out within the SOS clinical trial (NCT03645018) for lung cancer screening with DTS. Lung nodules were identified by visual analysis and then classified using the diameter and the radiological aspect of the nodule following lung-RADS. Haralick texture features were extracted from the segmented nodules. Both semantic variables and radiomics features were used to build a predictive model using logistic regression on a subset of variables selected with backward feature selection and using two machine learning: a Random Forest and a neural network with the whole subset of variables. The methods were applied to a train set and validated on a test set where diagnostic accuracy metrics were calculated.
Results
Binary visual analysis had a good sensitivity (0.95) but a low PPV (0.14). Lung-RADS classification increased the PPV (0.19) but with an unacceptable low sensitivity (0.65). Logistic regression showed a mildly increased PPV (0.29) but a lower sensitivity (0.20). Random Forest demonstrated a moderate PPV (0.40) but with a low sensitivity (0.30). Neural network demonstrated to be the best predictor with a high PPV (0.95) and a high sensitivity (0.90).
Conclusions
The neural network demonstrated the best PPV. The use of visual analysis along with neural network could help radiologists to reduce the number of false positive in DTS.
Key Points
•
We investigated several approaches to enhance the positive predictive value of chest digital tomosynthesis in the lung cancer detection.
•
Neural network demonstrated to be the best predictor with a nearly perfect PPV.
•
Neural network could help radiologists to reduce the number of false positive in DTS.</description><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-020-06783-z</identifier><identifier>PMID: 32166491</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial intelligence ; Cancer screening ; Chest ; Clinical trials ; Diagnostic Radiology ; Diagnostic systems ; Feature extraction ; Imaging ; Imaging Informatics and Artificial Intelligence ; Internal Medicine ; Interventional Radiology ; Learning algorithms ; Lung cancer ; Lung nodules ; Machine learning ; Medical screening ; Medicine ; Medicine & Public Health ; Neural networks ; Neuroradiology ; Nodules ; Prediction models ; Radiology ; Radiomics ; Regression analysis ; Regression models ; Ultrasound</subject><ispartof>European radiology, 2020-07, Vol.30 (7), p.4134-4140</ispartof><rights>European Society of Radiology 2020</rights><rights>European Society of Radiology 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-3da184870822799dd6749e67c71d777b42df7e82700a61eef7a3012c466c01723</citedby><cites>FETCH-LOGICAL-c419t-3da184870822799dd6749e67c71d777b42df7e82700a61eef7a3012c466c01723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-020-06783-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-020-06783-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32166491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chauvie, Stéphane</creatorcontrib><creatorcontrib>De Maggi, Adriano</creatorcontrib><creatorcontrib>Baralis, Ilaria</creatorcontrib><creatorcontrib>Dalmasso, Federico</creatorcontrib><creatorcontrib>Berchialla, Paola</creatorcontrib><creatorcontrib>Priotto, Roberto</creatorcontrib><creatorcontrib>Violino, Paolo</creatorcontrib><creatorcontrib>Mazza, Federico</creatorcontrib><creatorcontrib>Melloni, Giulio</creatorcontrib><creatorcontrib>Grosso, Maurizio</creatorcontrib><creatorcontrib>SOS Study team</creatorcontrib><creatorcontrib>SOS Study team</creatorcontrib><title>Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objective
To enhance the positive predictive value (PPV) of chest digital tomosynthesis (DTS) in the lung cancer detection with the analysis of radiomics features.
Method
The investigation was carried out within the SOS clinical trial (NCT03645018) for lung cancer screening with DTS. Lung nodules were identified by visual analysis and then classified using the diameter and the radiological aspect of the nodule following lung-RADS. Haralick texture features were extracted from the segmented nodules. Both semantic variables and radiomics features were used to build a predictive model using logistic regression on a subset of variables selected with backward feature selection and using two machine learning: a Random Forest and a neural network with the whole subset of variables. The methods were applied to a train set and validated on a test set where diagnostic accuracy metrics were calculated.
Results
Binary visual analysis had a good sensitivity (0.95) but a low PPV (0.14). Lung-RADS classification increased the PPV (0.19) but with an unacceptable low sensitivity (0.65). Logistic regression showed a mildly increased PPV (0.29) but a lower sensitivity (0.20). Random Forest demonstrated a moderate PPV (0.40) but with a low sensitivity (0.30). Neural network demonstrated to be the best predictor with a high PPV (0.95) and a high sensitivity (0.90).
Conclusions
The neural network demonstrated the best PPV. The use of visual analysis along with neural network could help radiologists to reduce the number of false positive in DTS.
Key Points
•
We investigated several approaches to enhance the positive predictive value of chest digital tomosynthesis in the lung cancer detection.
•
Neural network demonstrated to be the best predictor with a nearly perfect PPV.
•
Neural network could help radiologists to reduce the number of false positive in DTS.</description><subject>Artificial intelligence</subject><subject>Cancer screening</subject><subject>Chest</subject><subject>Clinical trials</subject><subject>Diagnostic Radiology</subject><subject>Diagnostic systems</subject><subject>Feature extraction</subject><subject>Imaging</subject><subject>Imaging Informatics and Artificial Intelligence</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Learning algorithms</subject><subject>Lung cancer</subject><subject>Lung nodules</subject><subject>Machine learning</subject><subject>Medical screening</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neural networks</subject><subject>Neuroradiology</subject><subject>Nodules</subject><subject>Prediction models</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Ultrasound</subject><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctuFDEQRS0EIkPgB1ggS2zYNJQfaXcvo4iXFCmLwNpy7OqZinrswXYnSj6Gb8WTCSCxYGG5ZJ97q-zL2GsB7wWA-VAAlIIOZFu9GVR3_4SthFayEzDop2wFoxo6M476iL0o5RoARqHNc3akpOh7PYoV-3maK03kyc2cYsV5pjVGj9zFwLMLlLbkC8e4cfvTukG-S4Uq3bQiYyD_UN64eUGeJh5oTbV5-Q2WymvapnIXm6pQ4VPKfF7imvu9V-YBKzZ5ivyW6oYiv7y45H6mSL451NxmesmeTW4u-OpxP2bfP338dvalO7_4_PXs9LzzWoy1U8GJQQ8GBinbe0PojR6xN96IYIy50jJMBgdpAFwvECfjFAjpdd97EEaqY_bu4LvL6cfSRrdbKr79houYlmKlMkZpBSeqoW__Qa_TkmObzkot9AjjidlT8kD5nErJONldpq3Ld1aA3adnD-nZlp59SM_eN9GbR-vlaovhj-R3XA1QB6C0q7jG_Lf3f2x_AfdUp9Q</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Chauvie, Stéphane</creator><creator>De Maggi, Adriano</creator><creator>Baralis, Ilaria</creator><creator>Dalmasso, Federico</creator><creator>Berchialla, Paola</creator><creator>Priotto, Roberto</creator><creator>Violino, Paolo</creator><creator>Mazza, Federico</creator><creator>Melloni, Giulio</creator><creator>Grosso, Maurizio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20200701</creationdate><title>Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial</title><author>Chauvie, Stéphane ; De Maggi, Adriano ; Baralis, Ilaria ; Dalmasso, Federico ; Berchialla, Paola ; Priotto, Roberto ; Violino, Paolo ; Mazza, Federico ; Melloni, Giulio ; Grosso, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-3da184870822799dd6749e67c71d777b42df7e82700a61eef7a3012c466c01723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Cancer screening</topic><topic>Chest</topic><topic>Clinical trials</topic><topic>Diagnostic Radiology</topic><topic>Diagnostic systems</topic><topic>Feature extraction</topic><topic>Imaging</topic><topic>Imaging Informatics and Artificial Intelligence</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Learning algorithms</topic><topic>Lung cancer</topic><topic>Lung nodules</topic><topic>Machine learning</topic><topic>Medical screening</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neural networks</topic><topic>Neuroradiology</topic><topic>Nodules</topic><topic>Prediction models</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chauvie, Stéphane</creatorcontrib><creatorcontrib>De Maggi, Adriano</creatorcontrib><creatorcontrib>Baralis, Ilaria</creatorcontrib><creatorcontrib>Dalmasso, Federico</creatorcontrib><creatorcontrib>Berchialla, Paola</creatorcontrib><creatorcontrib>Priotto, Roberto</creatorcontrib><creatorcontrib>Violino, Paolo</creatorcontrib><creatorcontrib>Mazza, Federico</creatorcontrib><creatorcontrib>Melloni, Giulio</creatorcontrib><creatorcontrib>Grosso, Maurizio</creatorcontrib><creatorcontrib>SOS Study team</creatorcontrib><creatorcontrib>SOS Study team</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chauvie, Stéphane</au><au>De Maggi, Adriano</au><au>Baralis, Ilaria</au><au>Dalmasso, Federico</au><au>Berchialla, Paola</au><au>Priotto, Roberto</au><au>Violino, Paolo</au><au>Mazza, Federico</au><au>Melloni, Giulio</au><au>Grosso, Maurizio</au><aucorp>SOS Study team</aucorp><aucorp>SOS Study team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>30</volume><issue>7</issue><spage>4134</spage><epage>4140</epage><pages>4134-4140</pages><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objective
To enhance the positive predictive value (PPV) of chest digital tomosynthesis (DTS) in the lung cancer detection with the analysis of radiomics features.
Method
The investigation was carried out within the SOS clinical trial (NCT03645018) for lung cancer screening with DTS. Lung nodules were identified by visual analysis and then classified using the diameter and the radiological aspect of the nodule following lung-RADS. Haralick texture features were extracted from the segmented nodules. Both semantic variables and radiomics features were used to build a predictive model using logistic regression on a subset of variables selected with backward feature selection and using two machine learning: a Random Forest and a neural network with the whole subset of variables. The methods were applied to a train set and validated on a test set where diagnostic accuracy metrics were calculated.
Results
Binary visual analysis had a good sensitivity (0.95) but a low PPV (0.14). Lung-RADS classification increased the PPV (0.19) but with an unacceptable low sensitivity (0.65). Logistic regression showed a mildly increased PPV (0.29) but a lower sensitivity (0.20). Random Forest demonstrated a moderate PPV (0.40) but with a low sensitivity (0.30). Neural network demonstrated to be the best predictor with a high PPV (0.95) and a high sensitivity (0.90).
Conclusions
The neural network demonstrated the best PPV. The use of visual analysis along with neural network could help radiologists to reduce the number of false positive in DTS.
Key Points
•
We investigated several approaches to enhance the positive predictive value of chest digital tomosynthesis in the lung cancer detection.
•
Neural network demonstrated to be the best predictor with a nearly perfect PPV.
•
Neural network could help radiologists to reduce the number of false positive in DTS.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32166491</pmid><doi>10.1007/s00330-020-06783-z</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-7994 |
ispartof | European radiology, 2020-07, Vol.30 (7), p.4134-4140 |
issn | 0938-7994 1432-1084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2377343053 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial intelligence Cancer screening Chest Clinical trials Diagnostic Radiology Diagnostic systems Feature extraction Imaging Imaging Informatics and Artificial Intelligence Internal Medicine Interventional Radiology Learning algorithms Lung cancer Lung nodules Machine learning Medical screening Medicine Medicine & Public Health Neural networks Neuroradiology Nodules Prediction models Radiology Radiomics Regression analysis Regression models Ultrasound |
title | Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20and%20radiomics%20enhance%20the%20positive%20predictive%20value%20of%20digital%20chest%20tomosynthesis%20for%20lung%20cancer%20detection%20within%20SOS%20clinical%20trial&rft.jtitle=European%20radiology&rft.au=Chauvie,%20St%C3%A9phane&rft.aucorp=SOS%20Study%20team&rft.date=2020-07-01&rft.volume=30&rft.issue=7&rft.spage=4134&rft.epage=4140&rft.pages=4134-4140&rft.issn=0938-7994&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-020-06783-z&rft_dat=%3Cproquest_cross%3E2414909573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414909573&rft_id=info:pmid/32166491&rfr_iscdi=true |