Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial

Objective To enhance the positive predictive value (PPV) of chest digital tomosynthesis (DTS) in the lung cancer detection with the analysis of radiomics features. Method The investigation was carried out within the SOS clinical trial (NCT03645018) for lung cancer screening with DTS. Lung nodules we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2020-07, Vol.30 (7), p.4134-4140
Hauptverfasser: Chauvie, Stéphane, De Maggi, Adriano, Baralis, Ilaria, Dalmasso, Federico, Berchialla, Paola, Priotto, Roberto, Violino, Paolo, Mazza, Federico, Melloni, Giulio, Grosso, Maurizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4140
container_issue 7
container_start_page 4134
container_title European radiology
container_volume 30
creator Chauvie, Stéphane
De Maggi, Adriano
Baralis, Ilaria
Dalmasso, Federico
Berchialla, Paola
Priotto, Roberto
Violino, Paolo
Mazza, Federico
Melloni, Giulio
Grosso, Maurizio
description Objective To enhance the positive predictive value (PPV) of chest digital tomosynthesis (DTS) in the lung cancer detection with the analysis of radiomics features. Method The investigation was carried out within the SOS clinical trial (NCT03645018) for lung cancer screening with DTS. Lung nodules were identified by visual analysis and then classified using the diameter and the radiological aspect of the nodule following lung-RADS. Haralick texture features were extracted from the segmented nodules. Both semantic variables and radiomics features were used to build a predictive model using logistic regression on a subset of variables selected with backward feature selection and using two machine learning: a Random Forest and a neural network with the whole subset of variables. The methods were applied to a train set and validated on a test set where diagnostic accuracy metrics were calculated. Results Binary visual analysis had a good sensitivity (0.95) but a low PPV (0.14). Lung-RADS classification increased the PPV (0.19) but with an unacceptable low sensitivity (0.65). Logistic regression showed a mildly increased PPV (0.29) but a lower sensitivity (0.20). Random Forest demonstrated a moderate PPV (0.40) but with a low sensitivity (0.30). Neural network demonstrated to be the best predictor with a high PPV (0.95) and a high sensitivity (0.90). Conclusions The neural network demonstrated the best PPV. The use of visual analysis along with neural network could help radiologists to reduce the number of false positive in DTS. Key Points • We investigated several approaches to enhance the positive predictive value of chest digital tomosynthesis in the lung cancer detection. • Neural network demonstrated to be the best predictor with a nearly perfect PPV. • Neural network could help radiologists to reduce the number of false positive in DTS.
doi_str_mv 10.1007/s00330-020-06783-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2377343053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414909573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-3da184870822799dd6749e67c71d777b42df7e82700a61eef7a3012c466c01723</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIkPgB1ggS2zYNJQfaXcvo4iXFCmLwNpy7OqZinrswXYnSj6Gb8WTCSCxYGG5ZJ97q-zL2GsB7wWA-VAAlIIOZFu9GVR3_4SthFayEzDop2wFoxo6M476iL0o5RoARqHNc3akpOh7PYoV-3maK03kyc2cYsV5pjVGj9zFwLMLlLbkC8e4cfvTukG-S4Uq3bQiYyD_UN64eUGeJh5oTbV5-Q2WymvapnIXm6pQ4VPKfF7imvu9V-YBKzZ5ivyW6oYiv7y45H6mSL451NxmesmeTW4u-OpxP2bfP338dvalO7_4_PXs9LzzWoy1U8GJQQ8GBinbe0PojR6xN96IYIy50jJMBgdpAFwvECfjFAjpdd97EEaqY_bu4LvL6cfSRrdbKr79houYlmKlMkZpBSeqoW__Qa_TkmObzkot9AjjidlT8kD5nErJONldpq3Ld1aA3adnD-nZlp59SM_eN9GbR-vlaovhj-R3XA1QB6C0q7jG_Lf3f2x_AfdUp9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414909573</pqid></control><display><type>article</type><title>Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chauvie, Stéphane ; De Maggi, Adriano ; Baralis, Ilaria ; Dalmasso, Federico ; Berchialla, Paola ; Priotto, Roberto ; Violino, Paolo ; Mazza, Federico ; Melloni, Giulio ; Grosso, Maurizio</creator><creatorcontrib>Chauvie, Stéphane ; De Maggi, Adriano ; Baralis, Ilaria ; Dalmasso, Federico ; Berchialla, Paola ; Priotto, Roberto ; Violino, Paolo ; Mazza, Federico ; Melloni, Giulio ; Grosso, Maurizio ; SOS Study team ; SOS Study team</creatorcontrib><description>Objective To enhance the positive predictive value (PPV) of chest digital tomosynthesis (DTS) in the lung cancer detection with the analysis of radiomics features. Method The investigation was carried out within the SOS clinical trial (NCT03645018) for lung cancer screening with DTS. Lung nodules were identified by visual analysis and then classified using the diameter and the radiological aspect of the nodule following lung-RADS. Haralick texture features were extracted from the segmented nodules. Both semantic variables and radiomics features were used to build a predictive model using logistic regression on a subset of variables selected with backward feature selection and using two machine learning: a Random Forest and a neural network with the whole subset of variables. The methods were applied to a train set and validated on a test set where diagnostic accuracy metrics were calculated. Results Binary visual analysis had a good sensitivity (0.95) but a low PPV (0.14). Lung-RADS classification increased the PPV (0.19) but with an unacceptable low sensitivity (0.65). Logistic regression showed a mildly increased PPV (0.29) but a lower sensitivity (0.20). Random Forest demonstrated a moderate PPV (0.40) but with a low sensitivity (0.30). Neural network demonstrated to be the best predictor with a high PPV (0.95) and a high sensitivity (0.90). Conclusions The neural network demonstrated the best PPV. The use of visual analysis along with neural network could help radiologists to reduce the number of false positive in DTS. Key Points • We investigated several approaches to enhance the positive predictive value of chest digital tomosynthesis in the lung cancer detection. • Neural network demonstrated to be the best predictor with a nearly perfect PPV. • Neural network could help radiologists to reduce the number of false positive in DTS.</description><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-020-06783-z</identifier><identifier>PMID: 32166491</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial intelligence ; Cancer screening ; Chest ; Clinical trials ; Diagnostic Radiology ; Diagnostic systems ; Feature extraction ; Imaging ; Imaging Informatics and Artificial Intelligence ; Internal Medicine ; Interventional Radiology ; Learning algorithms ; Lung cancer ; Lung nodules ; Machine learning ; Medical screening ; Medicine ; Medicine &amp; Public Health ; Neural networks ; Neuroradiology ; Nodules ; Prediction models ; Radiology ; Radiomics ; Regression analysis ; Regression models ; Ultrasound</subject><ispartof>European radiology, 2020-07, Vol.30 (7), p.4134-4140</ispartof><rights>European Society of Radiology 2020</rights><rights>European Society of Radiology 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-3da184870822799dd6749e67c71d777b42df7e82700a61eef7a3012c466c01723</citedby><cites>FETCH-LOGICAL-c419t-3da184870822799dd6749e67c71d777b42df7e82700a61eef7a3012c466c01723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-020-06783-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-020-06783-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32166491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chauvie, Stéphane</creatorcontrib><creatorcontrib>De Maggi, Adriano</creatorcontrib><creatorcontrib>Baralis, Ilaria</creatorcontrib><creatorcontrib>Dalmasso, Federico</creatorcontrib><creatorcontrib>Berchialla, Paola</creatorcontrib><creatorcontrib>Priotto, Roberto</creatorcontrib><creatorcontrib>Violino, Paolo</creatorcontrib><creatorcontrib>Mazza, Federico</creatorcontrib><creatorcontrib>Melloni, Giulio</creatorcontrib><creatorcontrib>Grosso, Maurizio</creatorcontrib><creatorcontrib>SOS Study team</creatorcontrib><creatorcontrib>SOS Study team</creatorcontrib><title>Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objective To enhance the positive predictive value (PPV) of chest digital tomosynthesis (DTS) in the lung cancer detection with the analysis of radiomics features. Method The investigation was carried out within the SOS clinical trial (NCT03645018) for lung cancer screening with DTS. Lung nodules were identified by visual analysis and then classified using the diameter and the radiological aspect of the nodule following lung-RADS. Haralick texture features were extracted from the segmented nodules. Both semantic variables and radiomics features were used to build a predictive model using logistic regression on a subset of variables selected with backward feature selection and using two machine learning: a Random Forest and a neural network with the whole subset of variables. The methods were applied to a train set and validated on a test set where diagnostic accuracy metrics were calculated. Results Binary visual analysis had a good sensitivity (0.95) but a low PPV (0.14). Lung-RADS classification increased the PPV (0.19) but with an unacceptable low sensitivity (0.65). Logistic regression showed a mildly increased PPV (0.29) but a lower sensitivity (0.20). Random Forest demonstrated a moderate PPV (0.40) but with a low sensitivity (0.30). Neural network demonstrated to be the best predictor with a high PPV (0.95) and a high sensitivity (0.90). Conclusions The neural network demonstrated the best PPV. The use of visual analysis along with neural network could help radiologists to reduce the number of false positive in DTS. Key Points • We investigated several approaches to enhance the positive predictive value of chest digital tomosynthesis in the lung cancer detection. • Neural network demonstrated to be the best predictor with a nearly perfect PPV. • Neural network could help radiologists to reduce the number of false positive in DTS.</description><subject>Artificial intelligence</subject><subject>Cancer screening</subject><subject>Chest</subject><subject>Clinical trials</subject><subject>Diagnostic Radiology</subject><subject>Diagnostic systems</subject><subject>Feature extraction</subject><subject>Imaging</subject><subject>Imaging Informatics and Artificial Intelligence</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Learning algorithms</subject><subject>Lung cancer</subject><subject>Lung nodules</subject><subject>Machine learning</subject><subject>Medical screening</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neural networks</subject><subject>Neuroradiology</subject><subject>Nodules</subject><subject>Prediction models</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Ultrasound</subject><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctuFDEQRS0EIkPgB1ggS2zYNJQfaXcvo4iXFCmLwNpy7OqZinrswXYnSj6Gb8WTCSCxYGG5ZJ97q-zL2GsB7wWA-VAAlIIOZFu9GVR3_4SthFayEzDop2wFoxo6M476iL0o5RoARqHNc3akpOh7PYoV-3maK03kyc2cYsV5pjVGj9zFwLMLlLbkC8e4cfvTukG-S4Uq3bQiYyD_UN64eUGeJh5oTbV5-Q2WymvapnIXm6pQ4VPKfF7imvu9V-YBKzZ5ivyW6oYiv7y45H6mSL451NxmesmeTW4u-OpxP2bfP338dvalO7_4_PXs9LzzWoy1U8GJQQ8GBinbe0PojR6xN96IYIy50jJMBgdpAFwvECfjFAjpdd97EEaqY_bu4LvL6cfSRrdbKr79houYlmKlMkZpBSeqoW__Qa_TkmObzkot9AjjidlT8kD5nErJONldpq3Ld1aA3adnD-nZlp59SM_eN9GbR-vlaovhj-R3XA1QB6C0q7jG_Lf3f2x_AfdUp9Q</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Chauvie, Stéphane</creator><creator>De Maggi, Adriano</creator><creator>Baralis, Ilaria</creator><creator>Dalmasso, Federico</creator><creator>Berchialla, Paola</creator><creator>Priotto, Roberto</creator><creator>Violino, Paolo</creator><creator>Mazza, Federico</creator><creator>Melloni, Giulio</creator><creator>Grosso, Maurizio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20200701</creationdate><title>Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial</title><author>Chauvie, Stéphane ; De Maggi, Adriano ; Baralis, Ilaria ; Dalmasso, Federico ; Berchialla, Paola ; Priotto, Roberto ; Violino, Paolo ; Mazza, Federico ; Melloni, Giulio ; Grosso, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-3da184870822799dd6749e67c71d777b42df7e82700a61eef7a3012c466c01723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Cancer screening</topic><topic>Chest</topic><topic>Clinical trials</topic><topic>Diagnostic Radiology</topic><topic>Diagnostic systems</topic><topic>Feature extraction</topic><topic>Imaging</topic><topic>Imaging Informatics and Artificial Intelligence</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Learning algorithms</topic><topic>Lung cancer</topic><topic>Lung nodules</topic><topic>Machine learning</topic><topic>Medical screening</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neural networks</topic><topic>Neuroradiology</topic><topic>Nodules</topic><topic>Prediction models</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chauvie, Stéphane</creatorcontrib><creatorcontrib>De Maggi, Adriano</creatorcontrib><creatorcontrib>Baralis, Ilaria</creatorcontrib><creatorcontrib>Dalmasso, Federico</creatorcontrib><creatorcontrib>Berchialla, Paola</creatorcontrib><creatorcontrib>Priotto, Roberto</creatorcontrib><creatorcontrib>Violino, Paolo</creatorcontrib><creatorcontrib>Mazza, Federico</creatorcontrib><creatorcontrib>Melloni, Giulio</creatorcontrib><creatorcontrib>Grosso, Maurizio</creatorcontrib><creatorcontrib>SOS Study team</creatorcontrib><creatorcontrib>SOS Study team</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chauvie, Stéphane</au><au>De Maggi, Adriano</au><au>Baralis, Ilaria</au><au>Dalmasso, Federico</au><au>Berchialla, Paola</au><au>Priotto, Roberto</au><au>Violino, Paolo</au><au>Mazza, Federico</au><au>Melloni, Giulio</au><au>Grosso, Maurizio</au><aucorp>SOS Study team</aucorp><aucorp>SOS Study team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>30</volume><issue>7</issue><spage>4134</spage><epage>4140</epage><pages>4134-4140</pages><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objective To enhance the positive predictive value (PPV) of chest digital tomosynthesis (DTS) in the lung cancer detection with the analysis of radiomics features. Method The investigation was carried out within the SOS clinical trial (NCT03645018) for lung cancer screening with DTS. Lung nodules were identified by visual analysis and then classified using the diameter and the radiological aspect of the nodule following lung-RADS. Haralick texture features were extracted from the segmented nodules. Both semantic variables and radiomics features were used to build a predictive model using logistic regression on a subset of variables selected with backward feature selection and using two machine learning: a Random Forest and a neural network with the whole subset of variables. The methods were applied to a train set and validated on a test set where diagnostic accuracy metrics were calculated. Results Binary visual analysis had a good sensitivity (0.95) but a low PPV (0.14). Lung-RADS classification increased the PPV (0.19) but with an unacceptable low sensitivity (0.65). Logistic regression showed a mildly increased PPV (0.29) but a lower sensitivity (0.20). Random Forest demonstrated a moderate PPV (0.40) but with a low sensitivity (0.30). Neural network demonstrated to be the best predictor with a high PPV (0.95) and a high sensitivity (0.90). Conclusions The neural network demonstrated the best PPV. The use of visual analysis along with neural network could help radiologists to reduce the number of false positive in DTS. Key Points • We investigated several approaches to enhance the positive predictive value of chest digital tomosynthesis in the lung cancer detection. • Neural network demonstrated to be the best predictor with a nearly perfect PPV. • Neural network could help radiologists to reduce the number of false positive in DTS.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32166491</pmid><doi>10.1007/s00330-020-06783-z</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0938-7994
ispartof European radiology, 2020-07, Vol.30 (7), p.4134-4140
issn 0938-7994
1432-1084
language eng
recordid cdi_proquest_miscellaneous_2377343053
source SpringerLink Journals - AutoHoldings
subjects Artificial intelligence
Cancer screening
Chest
Clinical trials
Diagnostic Radiology
Diagnostic systems
Feature extraction
Imaging
Imaging Informatics and Artificial Intelligence
Internal Medicine
Interventional Radiology
Learning algorithms
Lung cancer
Lung nodules
Machine learning
Medical screening
Medicine
Medicine & Public Health
Neural networks
Neuroradiology
Nodules
Prediction models
Radiology
Radiomics
Regression analysis
Regression models
Ultrasound
title Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20and%20radiomics%20enhance%20the%20positive%20predictive%20value%20of%20digital%20chest%20tomosynthesis%20for%20lung%20cancer%20detection%20within%20SOS%20clinical%20trial&rft.jtitle=European%20radiology&rft.au=Chauvie,%20St%C3%A9phane&rft.aucorp=SOS%20Study%20team&rft.date=2020-07-01&rft.volume=30&rft.issue=7&rft.spage=4134&rft.epage=4140&rft.pages=4134-4140&rft.issn=0938-7994&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-020-06783-z&rft_dat=%3Cproquest_cross%3E2414909573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414909573&rft_id=info:pmid/32166491&rfr_iscdi=true