Sigma‐1 receptors control neuropathic pain and macrophage infiltration into the dorsal root ganglion after peripheral nerve injury
Neuron‐immune interaction in the dorsal root ganglia (DRG) plays a pivotal role in the neuropathic pain development after nerve injury. Sigma‐1 receptor (Sig‐1R) is expressed by DRG neurons but its role in neuropathic pain is not fully understood. We investigated the effect of peripheral Sig‐1R on n...
Gespeichert in:
Veröffentlicht in: | The FASEB journal 2020-04, Vol.34 (4), p.5951-5966 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neuron‐immune interaction in the dorsal root ganglia (DRG) plays a pivotal role in the neuropathic pain development after nerve injury. Sigma‐1 receptor (Sig‐1R) is expressed by DRG neurons but its role in neuropathic pain is not fully understood. We investigated the effect of peripheral Sig‐1R on neuroinflammation in the DRG after spared (sciatic) nerve injury (SNI) in mice. Nerve injury induced a decrease in NeuN staining along with the nuclear eccentricity and ATF3 expression in the injured DRG. Sig‐1R was present in all DRG neurons examined, and after SNI this receptor translocated to the periphery of the soma and the vicinity of the nucleus, especially in injured ATF3 + neurons. In WT mice, injured DRG produced the chemokine CCL2, and this was followed by massive infiltration of macrophages/monocytes, which clustered mainly around sensory neurons with translocated Sig‐1R, accompanied by robust IL‐6 increase and mechanical allodynia. In contrast, Sig‐1R knockout (Sig‐1R‐KO) mice showed reduced levels of CCL2, decreased macrophage/monocyte infiltration into DRG, and less IL‐6 and neuropathic mechanical allodynia after SNI. Our findings point to an important role of peripheral Sig‐1R in sensory neuron‐macrophage/monocyte communication in the DRG after peripheral nerve injury; thus, these receptors may contribute to the neuropathic pain phenotype. |
---|---|
ISSN: | 0892-6638 1530-6860 |
DOI: | 10.1096/fj.201901921R |