Image-Based Molecular Phenotyping of Pancreatic Ductal Adenocarcinoma

To bridge the translational gap between recent discoveries of distinct molecular phenotypes of pancreatic cancer and tangible improvements in patient outcome, there is an urgent need to develop strategies and tools informing and improving the clinical decision process. Radiomics and machine learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical medicine 2020-03, Vol.9 (3), p.724
Hauptverfasser: Kaissis, Georgios A, Ziegelmayer, Sebastian, Lohöfer, Fabian K, Harder, Felix N, Jungmann, Friederike, Sasse, Daniel, Muckenhuber, Alexander, Yen, Hsi-Yu, Steiger, Katja, Siveke, Jens, Friess, Helmut, Schmid, Roland, Weichert, Wilko, Makowski, Marcus R, Braren, Rickmer F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 724
container_title Journal of clinical medicine
container_volume 9
creator Kaissis, Georgios A
Ziegelmayer, Sebastian
Lohöfer, Fabian K
Harder, Felix N
Jungmann, Friederike
Sasse, Daniel
Muckenhuber, Alexander
Yen, Hsi-Yu
Steiger, Katja
Siveke, Jens
Friess, Helmut
Schmid, Roland
Weichert, Wilko
Makowski, Marcus R
Braren, Rickmer F
description To bridge the translational gap between recent discoveries of distinct molecular phenotypes of pancreatic cancer and tangible improvements in patient outcome, there is an urgent need to develop strategies and tools informing and improving the clinical decision process. Radiomics and machine learning approaches can offer non-invasive whole tumor analytics for clinical imaging data-based classification. The retrospective study assessed baseline computed tomography (CT) from 207 patients with proven pancreatic ductal adenocarcinoma (PDAC). Following expert level manual annotation, Pyradiomics was used for the extraction of 1474 radiomic features. The molecular tumor subtype was defined by immunohistochemical staining for KRT81 and HNF1a as quasi-mesenchymal (QM) vs. non-quasi-mesenchymal (non-QM). A Random Forest machine learning algorithm was developed to predict the molecular subtype from the radiomic features. The algorithm was then applied to an independent cohort of histopathologically unclassifiable tumors with distinct clinical outcomes. The classification algorithm achieved a sensitivity, specificity and ROC-AUC (area under the receiver operating characteristic curve) of 0.84 ± 0.05, 0.92 ± 0.01 and 0.93 ± 0.01, respectively. The median overall survival for predicted QM and non-QM tumors was 16.1 and 20.9 months, respectively, log-rank-test = 0.02, harzard ratio (HR) 1.59. The application of the algorithm to histopathologically unclassifiable tumors revealed two groups with significantly different survival (8.9 and 39.8 months, log-rank-test < 0.001, HR 4.33). The machine learning-based analysis of preoperative (CT) imaging allows the prediction of molecular PDAC subtypes highly relevant for patient survival, allowing advanced pre-operative patient stratification for precision medicine applications.
doi_str_mv 10.3390/jcm9030724
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2376213545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376213545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-68de37e9b3c2486a1c161d25526d81835436fc6956436a16c6196698439ea6ad3</originalsourceid><addsrcrecordid>eNpdkVtLxDAQhYMoKrov_gAp-CJCNbdOkxdB1yso-qDPYTbNrl3aZk1awX9vxHW9zMscmI_DGQ4he4weC6Hpydy2mgpacrlGtjkty5wKJdZ_6S0yinFO0yglOSs3yZbgrCi0ptvk8rbFmcvPMboqu_eNs0ODIXt8cZ3v3xd1N8v8NHvEzgaHfW2zi8H22GRnVQIsBlt3vsVdsjHFJrrRcu-Q56vLp_FNfvdwfTs-u8utpNDnoConSqcnwnKpAJllwCpeFBwqxZQopICpBV1AEsjAAtMAWkmhHQJWYoecfvkuhknrKuu6PmBjFqFuMbwbj7X5e-nqFzPzb6ZkkvECksHh0iD418HF3rR1tK5psHN-iIaLEjhLQYqEHvxD534IXXrPcJCMgpKgE3X0RdngYwxuugrDqPksyPwUlOD93_FX6Hcd4gOcpYm8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641068469</pqid></control><display><type>article</type><title>Image-Based Molecular Phenotyping of Pancreatic Ductal Adenocarcinoma</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Kaissis, Georgios A ; Ziegelmayer, Sebastian ; Lohöfer, Fabian K ; Harder, Felix N ; Jungmann, Friederike ; Sasse, Daniel ; Muckenhuber, Alexander ; Yen, Hsi-Yu ; Steiger, Katja ; Siveke, Jens ; Friess, Helmut ; Schmid, Roland ; Weichert, Wilko ; Makowski, Marcus R ; Braren, Rickmer F</creator><creatorcontrib>Kaissis, Georgios A ; Ziegelmayer, Sebastian ; Lohöfer, Fabian K ; Harder, Felix N ; Jungmann, Friederike ; Sasse, Daniel ; Muckenhuber, Alexander ; Yen, Hsi-Yu ; Steiger, Katja ; Siveke, Jens ; Friess, Helmut ; Schmid, Roland ; Weichert, Wilko ; Makowski, Marcus R ; Braren, Rickmer F</creatorcontrib><description>To bridge the translational gap between recent discoveries of distinct molecular phenotypes of pancreatic cancer and tangible improvements in patient outcome, there is an urgent need to develop strategies and tools informing and improving the clinical decision process. Radiomics and machine learning approaches can offer non-invasive whole tumor analytics for clinical imaging data-based classification. The retrospective study assessed baseline computed tomography (CT) from 207 patients with proven pancreatic ductal adenocarcinoma (PDAC). Following expert level manual annotation, Pyradiomics was used for the extraction of 1474 radiomic features. The molecular tumor subtype was defined by immunohistochemical staining for KRT81 and HNF1a as quasi-mesenchymal (QM) vs. non-quasi-mesenchymal (non-QM). A Random Forest machine learning algorithm was developed to predict the molecular subtype from the radiomic features. The algorithm was then applied to an independent cohort of histopathologically unclassifiable tumors with distinct clinical outcomes. The classification algorithm achieved a sensitivity, specificity and ROC-AUC (area under the receiver operating characteristic curve) of 0.84 ± 0.05, 0.92 ± 0.01 and 0.93 ± 0.01, respectively. The median overall survival for predicted QM and non-QM tumors was 16.1 and 20.9 months, respectively, log-rank-test = 0.02, harzard ratio (HR) 1.59. The application of the algorithm to histopathologically unclassifiable tumors revealed two groups with significantly different survival (8.9 and 39.8 months, log-rank-test &lt; 0.001, HR 4.33). The machine learning-based analysis of preoperative (CT) imaging allows the prediction of molecular PDAC subtypes highly relevant for patient survival, allowing advanced pre-operative patient stratification for precision medicine applications.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm9030724</identifier><identifier>PMID: 32155990</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Antigens ; Cancer ; Chemotherapy ; Classification ; Magnetic resonance imaging ; Pancreatic cancer ; Radiomics ; Tomography ; Tumors</subject><ispartof>Journal of clinical medicine, 2020-03, Vol.9 (3), p.724</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-68de37e9b3c2486a1c161d25526d81835436fc6956436a16c6196698439ea6ad3</citedby><cites>FETCH-LOGICAL-c406t-68de37e9b3c2486a1c161d25526d81835436fc6956436a16c6196698439ea6ad3</cites><orcidid>0000-0002-7269-5433 ; 0000-0003-2644-2782 ; 0000-0002-8772-4778 ; 0000-0001-8382-8062 ; 0000-0002-9600-4094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141256/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141256/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32155990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaissis, Georgios A</creatorcontrib><creatorcontrib>Ziegelmayer, Sebastian</creatorcontrib><creatorcontrib>Lohöfer, Fabian K</creatorcontrib><creatorcontrib>Harder, Felix N</creatorcontrib><creatorcontrib>Jungmann, Friederike</creatorcontrib><creatorcontrib>Sasse, Daniel</creatorcontrib><creatorcontrib>Muckenhuber, Alexander</creatorcontrib><creatorcontrib>Yen, Hsi-Yu</creatorcontrib><creatorcontrib>Steiger, Katja</creatorcontrib><creatorcontrib>Siveke, Jens</creatorcontrib><creatorcontrib>Friess, Helmut</creatorcontrib><creatorcontrib>Schmid, Roland</creatorcontrib><creatorcontrib>Weichert, Wilko</creatorcontrib><creatorcontrib>Makowski, Marcus R</creatorcontrib><creatorcontrib>Braren, Rickmer F</creatorcontrib><title>Image-Based Molecular Phenotyping of Pancreatic Ductal Adenocarcinoma</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>To bridge the translational gap between recent discoveries of distinct molecular phenotypes of pancreatic cancer and tangible improvements in patient outcome, there is an urgent need to develop strategies and tools informing and improving the clinical decision process. Radiomics and machine learning approaches can offer non-invasive whole tumor analytics for clinical imaging data-based classification. The retrospective study assessed baseline computed tomography (CT) from 207 patients with proven pancreatic ductal adenocarcinoma (PDAC). Following expert level manual annotation, Pyradiomics was used for the extraction of 1474 radiomic features. The molecular tumor subtype was defined by immunohistochemical staining for KRT81 and HNF1a as quasi-mesenchymal (QM) vs. non-quasi-mesenchymal (non-QM). A Random Forest machine learning algorithm was developed to predict the molecular subtype from the radiomic features. The algorithm was then applied to an independent cohort of histopathologically unclassifiable tumors with distinct clinical outcomes. The classification algorithm achieved a sensitivity, specificity and ROC-AUC (area under the receiver operating characteristic curve) of 0.84 ± 0.05, 0.92 ± 0.01 and 0.93 ± 0.01, respectively. The median overall survival for predicted QM and non-QM tumors was 16.1 and 20.9 months, respectively, log-rank-test = 0.02, harzard ratio (HR) 1.59. The application of the algorithm to histopathologically unclassifiable tumors revealed two groups with significantly different survival (8.9 and 39.8 months, log-rank-test &lt; 0.001, HR 4.33). The machine learning-based analysis of preoperative (CT) imaging allows the prediction of molecular PDAC subtypes highly relevant for patient survival, allowing advanced pre-operative patient stratification for precision medicine applications.</description><subject>Algorithms</subject><subject>Antigens</subject><subject>Cancer</subject><subject>Chemotherapy</subject><subject>Classification</subject><subject>Magnetic resonance imaging</subject><subject>Pancreatic cancer</subject><subject>Radiomics</subject><subject>Tomography</subject><subject>Tumors</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVtLxDAQhYMoKrov_gAp-CJCNbdOkxdB1yso-qDPYTbNrl3aZk1awX9vxHW9zMscmI_DGQ4he4weC6Hpydy2mgpacrlGtjkty5wKJdZ_6S0yinFO0yglOSs3yZbgrCi0ptvk8rbFmcvPMboqu_eNs0ODIXt8cZ3v3xd1N8v8NHvEzgaHfW2zi8H22GRnVQIsBlt3vsVdsjHFJrrRcu-Q56vLp_FNfvdwfTs-u8utpNDnoConSqcnwnKpAJllwCpeFBwqxZQopICpBV1AEsjAAtMAWkmhHQJWYoecfvkuhknrKuu6PmBjFqFuMbwbj7X5e-nqFzPzb6ZkkvECksHh0iD418HF3rR1tK5psHN-iIaLEjhLQYqEHvxD534IXXrPcJCMgpKgE3X0RdngYwxuugrDqPksyPwUlOD93_FX6Hcd4gOcpYm8</recordid><startdate>20200307</startdate><enddate>20200307</enddate><creator>Kaissis, Georgios A</creator><creator>Ziegelmayer, Sebastian</creator><creator>Lohöfer, Fabian K</creator><creator>Harder, Felix N</creator><creator>Jungmann, Friederike</creator><creator>Sasse, Daniel</creator><creator>Muckenhuber, Alexander</creator><creator>Yen, Hsi-Yu</creator><creator>Steiger, Katja</creator><creator>Siveke, Jens</creator><creator>Friess, Helmut</creator><creator>Schmid, Roland</creator><creator>Weichert, Wilko</creator><creator>Makowski, Marcus R</creator><creator>Braren, Rickmer F</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7269-5433</orcidid><orcidid>https://orcid.org/0000-0003-2644-2782</orcidid><orcidid>https://orcid.org/0000-0002-8772-4778</orcidid><orcidid>https://orcid.org/0000-0001-8382-8062</orcidid><orcidid>https://orcid.org/0000-0002-9600-4094</orcidid></search><sort><creationdate>20200307</creationdate><title>Image-Based Molecular Phenotyping of Pancreatic Ductal Adenocarcinoma</title><author>Kaissis, Georgios A ; Ziegelmayer, Sebastian ; Lohöfer, Fabian K ; Harder, Felix N ; Jungmann, Friederike ; Sasse, Daniel ; Muckenhuber, Alexander ; Yen, Hsi-Yu ; Steiger, Katja ; Siveke, Jens ; Friess, Helmut ; Schmid, Roland ; Weichert, Wilko ; Makowski, Marcus R ; Braren, Rickmer F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-68de37e9b3c2486a1c161d25526d81835436fc6956436a16c6196698439ea6ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antigens</topic><topic>Cancer</topic><topic>Chemotherapy</topic><topic>Classification</topic><topic>Magnetic resonance imaging</topic><topic>Pancreatic cancer</topic><topic>Radiomics</topic><topic>Tomography</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaissis, Georgios A</creatorcontrib><creatorcontrib>Ziegelmayer, Sebastian</creatorcontrib><creatorcontrib>Lohöfer, Fabian K</creatorcontrib><creatorcontrib>Harder, Felix N</creatorcontrib><creatorcontrib>Jungmann, Friederike</creatorcontrib><creatorcontrib>Sasse, Daniel</creatorcontrib><creatorcontrib>Muckenhuber, Alexander</creatorcontrib><creatorcontrib>Yen, Hsi-Yu</creatorcontrib><creatorcontrib>Steiger, Katja</creatorcontrib><creatorcontrib>Siveke, Jens</creatorcontrib><creatorcontrib>Friess, Helmut</creatorcontrib><creatorcontrib>Schmid, Roland</creatorcontrib><creatorcontrib>Weichert, Wilko</creatorcontrib><creatorcontrib>Makowski, Marcus R</creatorcontrib><creatorcontrib>Braren, Rickmer F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaissis, Georgios A</au><au>Ziegelmayer, Sebastian</au><au>Lohöfer, Fabian K</au><au>Harder, Felix N</au><au>Jungmann, Friederike</au><au>Sasse, Daniel</au><au>Muckenhuber, Alexander</au><au>Yen, Hsi-Yu</au><au>Steiger, Katja</au><au>Siveke, Jens</au><au>Friess, Helmut</au><au>Schmid, Roland</au><au>Weichert, Wilko</au><au>Makowski, Marcus R</au><au>Braren, Rickmer F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-Based Molecular Phenotyping of Pancreatic Ductal Adenocarcinoma</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2020-03-07</date><risdate>2020</risdate><volume>9</volume><issue>3</issue><spage>724</spage><pages>724-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>To bridge the translational gap between recent discoveries of distinct molecular phenotypes of pancreatic cancer and tangible improvements in patient outcome, there is an urgent need to develop strategies and tools informing and improving the clinical decision process. Radiomics and machine learning approaches can offer non-invasive whole tumor analytics for clinical imaging data-based classification. The retrospective study assessed baseline computed tomography (CT) from 207 patients with proven pancreatic ductal adenocarcinoma (PDAC). Following expert level manual annotation, Pyradiomics was used for the extraction of 1474 radiomic features. The molecular tumor subtype was defined by immunohistochemical staining for KRT81 and HNF1a as quasi-mesenchymal (QM) vs. non-quasi-mesenchymal (non-QM). A Random Forest machine learning algorithm was developed to predict the molecular subtype from the radiomic features. The algorithm was then applied to an independent cohort of histopathologically unclassifiable tumors with distinct clinical outcomes. The classification algorithm achieved a sensitivity, specificity and ROC-AUC (area under the receiver operating characteristic curve) of 0.84 ± 0.05, 0.92 ± 0.01 and 0.93 ± 0.01, respectively. The median overall survival for predicted QM and non-QM tumors was 16.1 and 20.9 months, respectively, log-rank-test = 0.02, harzard ratio (HR) 1.59. The application of the algorithm to histopathologically unclassifiable tumors revealed two groups with significantly different survival (8.9 and 39.8 months, log-rank-test &lt; 0.001, HR 4.33). The machine learning-based analysis of preoperative (CT) imaging allows the prediction of molecular PDAC subtypes highly relevant for patient survival, allowing advanced pre-operative patient stratification for precision medicine applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32155990</pmid><doi>10.3390/jcm9030724</doi><orcidid>https://orcid.org/0000-0002-7269-5433</orcidid><orcidid>https://orcid.org/0000-0003-2644-2782</orcidid><orcidid>https://orcid.org/0000-0002-8772-4778</orcidid><orcidid>https://orcid.org/0000-0001-8382-8062</orcidid><orcidid>https://orcid.org/0000-0002-9600-4094</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0383
ispartof Journal of clinical medicine, 2020-03, Vol.9 (3), p.724
issn 2077-0383
2077-0383
language eng
recordid cdi_proquest_miscellaneous_2376213545
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Algorithms
Antigens
Cancer
Chemotherapy
Classification
Magnetic resonance imaging
Pancreatic cancer
Radiomics
Tomography
Tumors
title Image-Based Molecular Phenotyping of Pancreatic Ductal Adenocarcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-Based%20Molecular%20Phenotyping%20of%20Pancreatic%20Ductal%20Adenocarcinoma&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Kaissis,%20Georgios%20A&rft.date=2020-03-07&rft.volume=9&rft.issue=3&rft.spage=724&rft.pages=724-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm9030724&rft_dat=%3Cproquest_pubme%3E2376213545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641068469&rft_id=info:pmid/32155990&rfr_iscdi=true