A bifunctional O-antigen polymerase structure reveals a new glycosyltransferase family
Lipopolysaccharide O-antigen is an attractive candidate for immunotherapeutic strategies targeting antibiotic-resistant Klebsiella pneumoniae . Several K. pneumoniae O-serotypes are based on a shared O2a-antigen backbone repeating unit: (→ 3)-α-Gal p -(1 → 3)-β-Gal f -(1 →). O2a antigen is synthesiz...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2020-04, Vol.16 (4), p.450-457 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 457 |
---|---|
container_issue | 4 |
container_start_page | 450 |
container_title | Nature chemical biology |
container_volume | 16 |
creator | Clarke, Bradley R. Ovchinnikova, Olga G. Sweeney, Ryan P. Kamski-Hennekam, Evelyn R. Gitalis, Russel Mallette, Evan Kelly, Steven D. Lowary, Todd L. Kimber, Matthew S. Whitfield, Chris |
description | Lipopolysaccharide O-antigen is an attractive candidate for immunotherapeutic strategies targeting antibiotic-resistant
Klebsiella pneumoniae
. Several
K. pneumoniae
O-serotypes are based on a shared O2a-antigen backbone repeating unit: (→ 3)-α-Gal
p
-(1 → 3)-β-Gal
f
-(1 →). O2a antigen is synthesized on undecaprenol diphosphate in a pathway involving the O2a polymerase, WbbM, before its export by an ATP-binding cassette transporter. This dual domain polymerase possesses a C-terminal galactopyranosyltransferase resembling known GT8 family enzymes, and an N-terminal DUF4422 domain identified here as a galactofuranosyltransferase defining a previously unrecognized family (GT111). Functional assignment of DUF4422 explains how galactofuranose is incorporated into various polysaccharides of importance in vaccine production and the food industry. In the 2.1-Å resolution structure, three WbbM protomers associate to form a flattened triangular prism connected to a central stalk that orients the active sites toward the membrane. The biochemical, structural and topological properties of WbbM offer broader insight into the mechanisms of assembly of bacterial cell-surface glycans.
Structural characterization of WbbM, an enzyme involved in O2a-antigen biosynthesis in
Klebsiella pneumoniae
, reveals two unique active sites with galactopyranosyl- or galactofuranosyl-transferase activities for oligosaccharide polymerization. |
doi_str_mv | 10.1038/s41589-020-0494-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2375914149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476759682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-bd40dd95a45a7e68e3d5879f1c19d04a340b4859d64dfbc8c38be00fd9166cac3</originalsourceid><addsrcrecordid>eNp90ctq3DAUBmAREpLpJA_QTTFkk42bI-tiaRmGNi0EZtNkK2TpePDgy0SyG_z2VfA0gUK6kkDf-YX0E_KZwlcKTN1GToXSORSQA9c8hxOyokIUOedSn77tBVyQTzHuAZiUVJ2TC1ZQUQhOV-TpLquaeurd2Ay9bbNtbvux2WGfHYZ27jDYiFkcw-TGKWAW8DfaNmY26_El27WzG-LcjsH2sV5sbbumnS_JWZ0cXh3XNXn8_u3X5kf-sL3_ubl7yJ0APeaV5-C9FpYLW6JUyLxQpa6po9oDt4xDxZXQXnJfV045pioEqL2mUjrr2JrcLLmHMDxPGEfTNdFh29oehymagpVCU065TvT6H7ofppDenBQvZXJSFf9VTKUfLEouk6KLcmGIMWBtDqHpbJgNBfNajVmqMaka81qNgTTz5Zg8VR36t4m_XSRQLCCmo36H4f3qj1P_AIGpmRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2380032746</pqid></control><display><type>article</type><title>A bifunctional O-antigen polymerase structure reveals a new glycosyltransferase family</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Clarke, Bradley R. ; Ovchinnikova, Olga G. ; Sweeney, Ryan P. ; Kamski-Hennekam, Evelyn R. ; Gitalis, Russel ; Mallette, Evan ; Kelly, Steven D. ; Lowary, Todd L. ; Kimber, Matthew S. ; Whitfield, Chris</creator><creatorcontrib>Clarke, Bradley R. ; Ovchinnikova, Olga G. ; Sweeney, Ryan P. ; Kamski-Hennekam, Evelyn R. ; Gitalis, Russel ; Mallette, Evan ; Kelly, Steven D. ; Lowary, Todd L. ; Kimber, Matthew S. ; Whitfield, Chris</creatorcontrib><description>Lipopolysaccharide O-antigen is an attractive candidate for immunotherapeutic strategies targeting antibiotic-resistant
Klebsiella pneumoniae
. Several
K. pneumoniae
O-serotypes are based on a shared O2a-antigen backbone repeating unit: (→ 3)-α-Gal
p
-(1 → 3)-β-Gal
f
-(1 →). O2a antigen is synthesized on undecaprenol diphosphate in a pathway involving the O2a polymerase, WbbM, before its export by an ATP-binding cassette transporter. This dual domain polymerase possesses a C-terminal galactopyranosyltransferase resembling known GT8 family enzymes, and an N-terminal DUF4422 domain identified here as a galactofuranosyltransferase defining a previously unrecognized family (GT111). Functional assignment of DUF4422 explains how galactofuranose is incorporated into various polysaccharides of importance in vaccine production and the food industry. In the 2.1-Å resolution structure, three WbbM protomers associate to form a flattened triangular prism connected to a central stalk that orients the active sites toward the membrane. The biochemical, structural and topological properties of WbbM offer broader insight into the mechanisms of assembly of bacterial cell-surface glycans.
Structural characterization of WbbM, an enzyme involved in O2a-antigen biosynthesis in
Klebsiella pneumoniae
, reveals two unique active sites with galactopyranosyl- or galactofuranosyl-transferase activities for oligosaccharide polymerization.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-020-0494-0</identifier><identifier>PMID: 32152541</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/535 ; 631/92/221 ; 631/92/607 ; 631/92/72 ; Amino Acid Sequence ; Antibiotic resistance ; Antibiotics ; Antigens ; ATP-Binding Cassette Transporters - metabolism ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Biosynthesis ; Cell Biology ; Cell Membrane - metabolism ; Cell surface ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Domains ; Food industry ; Food processing industry ; Glycosyltransferase ; Glycosyltransferases - metabolism ; Glycosyltransferases - physiology ; Hexosyltransferases ; Klebsiella ; Klebsiella pneumoniae ; Klebsiella pneumoniae - metabolism ; Lipopolysaccharides ; Lipopolysaccharides - chemistry ; O Antigens - metabolism ; O Antigens - ultrastructure ; Oligosaccharides ; Polymerization ; Polysaccharides ; Polysaccharides, Bacterial - chemistry ; Saccharides ; Serotypes ; Structural analysis</subject><ispartof>Nature chemical biology, 2020-04, Vol.16 (4), p.450-457</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-bd40dd95a45a7e68e3d5879f1c19d04a340b4859d64dfbc8c38be00fd9166cac3</citedby><cites>FETCH-LOGICAL-c509t-bd40dd95a45a7e68e3d5879f1c19d04a340b4859d64dfbc8c38be00fd9166cac3</cites><orcidid>0000-0002-0937-475X ; 0000-0003-2233-1268 ; 0000-0002-5267-7027 ; 0000-0003-4022-3041 ; 0000-0001-9454-5586 ; 0000-0002-9576-7997 ; 0000-0002-0429-323X ; 0000-0003-1250-7055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32152541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clarke, Bradley R.</creatorcontrib><creatorcontrib>Ovchinnikova, Olga G.</creatorcontrib><creatorcontrib>Sweeney, Ryan P.</creatorcontrib><creatorcontrib>Kamski-Hennekam, Evelyn R.</creatorcontrib><creatorcontrib>Gitalis, Russel</creatorcontrib><creatorcontrib>Mallette, Evan</creatorcontrib><creatorcontrib>Kelly, Steven D.</creatorcontrib><creatorcontrib>Lowary, Todd L.</creatorcontrib><creatorcontrib>Kimber, Matthew S.</creatorcontrib><creatorcontrib>Whitfield, Chris</creatorcontrib><title>A bifunctional O-antigen polymerase structure reveals a new glycosyltransferase family</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Lipopolysaccharide O-antigen is an attractive candidate for immunotherapeutic strategies targeting antibiotic-resistant
Klebsiella pneumoniae
. Several
K. pneumoniae
O-serotypes are based on a shared O2a-antigen backbone repeating unit: (→ 3)-α-Gal
p
-(1 → 3)-β-Gal
f
-(1 →). O2a antigen is synthesized on undecaprenol diphosphate in a pathway involving the O2a polymerase, WbbM, before its export by an ATP-binding cassette transporter. This dual domain polymerase possesses a C-terminal galactopyranosyltransferase resembling known GT8 family enzymes, and an N-terminal DUF4422 domain identified here as a galactofuranosyltransferase defining a previously unrecognized family (GT111). Functional assignment of DUF4422 explains how galactofuranose is incorporated into various polysaccharides of importance in vaccine production and the food industry. In the 2.1-Å resolution structure, three WbbM protomers associate to form a flattened triangular prism connected to a central stalk that orients the active sites toward the membrane. The biochemical, structural and topological properties of WbbM offer broader insight into the mechanisms of assembly of bacterial cell-surface glycans.
Structural characterization of WbbM, an enzyme involved in O2a-antigen biosynthesis in
Klebsiella pneumoniae
, reveals two unique active sites with galactopyranosyl- or galactofuranosyl-transferase activities for oligosaccharide polymerization.</description><subject>631/535</subject><subject>631/92/221</subject><subject>631/92/607</subject><subject>631/92/72</subject><subject>Amino Acid Sequence</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antigens</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Biosynthesis</subject><subject>Cell Biology</subject><subject>Cell Membrane - metabolism</subject><subject>Cell surface</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Domains</subject><subject>Food industry</subject><subject>Food processing industry</subject><subject>Glycosyltransferase</subject><subject>Glycosyltransferases - metabolism</subject><subject>Glycosyltransferases - physiology</subject><subject>Hexosyltransferases</subject><subject>Klebsiella</subject><subject>Klebsiella pneumoniae</subject><subject>Klebsiella pneumoniae - metabolism</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - chemistry</subject><subject>O Antigens - metabolism</subject><subject>O Antigens - ultrastructure</subject><subject>Oligosaccharides</subject><subject>Polymerization</subject><subject>Polysaccharides</subject><subject>Polysaccharides, Bacterial - chemistry</subject><subject>Saccharides</subject><subject>Serotypes</subject><subject>Structural analysis</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90ctq3DAUBmAREpLpJA_QTTFkk42bI-tiaRmGNi0EZtNkK2TpePDgy0SyG_z2VfA0gUK6kkDf-YX0E_KZwlcKTN1GToXSORSQA9c8hxOyokIUOedSn77tBVyQTzHuAZiUVJ2TC1ZQUQhOV-TpLquaeurd2Ay9bbNtbvux2WGfHYZ27jDYiFkcw-TGKWAW8DfaNmY26_El27WzG-LcjsH2sV5sbbumnS_JWZ0cXh3XNXn8_u3X5kf-sL3_ubl7yJ0APeaV5-C9FpYLW6JUyLxQpa6po9oDt4xDxZXQXnJfV045pioEqL2mUjrr2JrcLLmHMDxPGEfTNdFh29oehymagpVCU065TvT6H7ofppDenBQvZXJSFf9VTKUfLEouk6KLcmGIMWBtDqHpbJgNBfNajVmqMaka81qNgTTz5Zg8VR36t4m_XSRQLCCmo36H4f3qj1P_AIGpmRw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Clarke, Bradley R.</creator><creator>Ovchinnikova, Olga G.</creator><creator>Sweeney, Ryan P.</creator><creator>Kamski-Hennekam, Evelyn R.</creator><creator>Gitalis, Russel</creator><creator>Mallette, Evan</creator><creator>Kelly, Steven D.</creator><creator>Lowary, Todd L.</creator><creator>Kimber, Matthew S.</creator><creator>Whitfield, Chris</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0937-475X</orcidid><orcidid>https://orcid.org/0000-0003-2233-1268</orcidid><orcidid>https://orcid.org/0000-0002-5267-7027</orcidid><orcidid>https://orcid.org/0000-0003-4022-3041</orcidid><orcidid>https://orcid.org/0000-0001-9454-5586</orcidid><orcidid>https://orcid.org/0000-0002-9576-7997</orcidid><orcidid>https://orcid.org/0000-0002-0429-323X</orcidid><orcidid>https://orcid.org/0000-0003-1250-7055</orcidid></search><sort><creationdate>20200401</creationdate><title>A bifunctional O-antigen polymerase structure reveals a new glycosyltransferase family</title><author>Clarke, Bradley R. ; Ovchinnikova, Olga G. ; Sweeney, Ryan P. ; Kamski-Hennekam, Evelyn R. ; Gitalis, Russel ; Mallette, Evan ; Kelly, Steven D. ; Lowary, Todd L. ; Kimber, Matthew S. ; Whitfield, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-bd40dd95a45a7e68e3d5879f1c19d04a340b4859d64dfbc8c38be00fd9166cac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/535</topic><topic>631/92/221</topic><topic>631/92/607</topic><topic>631/92/72</topic><topic>Amino Acid Sequence</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antigens</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Biosynthesis</topic><topic>Cell Biology</topic><topic>Cell Membrane - metabolism</topic><topic>Cell surface</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Domains</topic><topic>Food industry</topic><topic>Food processing industry</topic><topic>Glycosyltransferase</topic><topic>Glycosyltransferases - metabolism</topic><topic>Glycosyltransferases - physiology</topic><topic>Hexosyltransferases</topic><topic>Klebsiella</topic><topic>Klebsiella pneumoniae</topic><topic>Klebsiella pneumoniae - metabolism</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - chemistry</topic><topic>O Antigens - metabolism</topic><topic>O Antigens - ultrastructure</topic><topic>Oligosaccharides</topic><topic>Polymerization</topic><topic>Polysaccharides</topic><topic>Polysaccharides, Bacterial - chemistry</topic><topic>Saccharides</topic><topic>Serotypes</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clarke, Bradley R.</creatorcontrib><creatorcontrib>Ovchinnikova, Olga G.</creatorcontrib><creatorcontrib>Sweeney, Ryan P.</creatorcontrib><creatorcontrib>Kamski-Hennekam, Evelyn R.</creatorcontrib><creatorcontrib>Gitalis, Russel</creatorcontrib><creatorcontrib>Mallette, Evan</creatorcontrib><creatorcontrib>Kelly, Steven D.</creatorcontrib><creatorcontrib>Lowary, Todd L.</creatorcontrib><creatorcontrib>Kimber, Matthew S.</creatorcontrib><creatorcontrib>Whitfield, Chris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clarke, Bradley R.</au><au>Ovchinnikova, Olga G.</au><au>Sweeney, Ryan P.</au><au>Kamski-Hennekam, Evelyn R.</au><au>Gitalis, Russel</au><au>Mallette, Evan</au><au>Kelly, Steven D.</au><au>Lowary, Todd L.</au><au>Kimber, Matthew S.</au><au>Whitfield, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bifunctional O-antigen polymerase structure reveals a new glycosyltransferase family</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>450</spage><epage>457</epage><pages>450-457</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Lipopolysaccharide O-antigen is an attractive candidate for immunotherapeutic strategies targeting antibiotic-resistant
Klebsiella pneumoniae
. Several
K. pneumoniae
O-serotypes are based on a shared O2a-antigen backbone repeating unit: (→ 3)-α-Gal
p
-(1 → 3)-β-Gal
f
-(1 →). O2a antigen is synthesized on undecaprenol diphosphate in a pathway involving the O2a polymerase, WbbM, before its export by an ATP-binding cassette transporter. This dual domain polymerase possesses a C-terminal galactopyranosyltransferase resembling known GT8 family enzymes, and an N-terminal DUF4422 domain identified here as a galactofuranosyltransferase defining a previously unrecognized family (GT111). Functional assignment of DUF4422 explains how galactofuranose is incorporated into various polysaccharides of importance in vaccine production and the food industry. In the 2.1-Å resolution structure, three WbbM protomers associate to form a flattened triangular prism connected to a central stalk that orients the active sites toward the membrane. The biochemical, structural and topological properties of WbbM offer broader insight into the mechanisms of assembly of bacterial cell-surface glycans.
Structural characterization of WbbM, an enzyme involved in O2a-antigen biosynthesis in
Klebsiella pneumoniae
, reveals two unique active sites with galactopyranosyl- or galactofuranosyl-transferase activities for oligosaccharide polymerization.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32152541</pmid><doi>10.1038/s41589-020-0494-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0937-475X</orcidid><orcidid>https://orcid.org/0000-0003-2233-1268</orcidid><orcidid>https://orcid.org/0000-0002-5267-7027</orcidid><orcidid>https://orcid.org/0000-0003-4022-3041</orcidid><orcidid>https://orcid.org/0000-0001-9454-5586</orcidid><orcidid>https://orcid.org/0000-0002-9576-7997</orcidid><orcidid>https://orcid.org/0000-0002-0429-323X</orcidid><orcidid>https://orcid.org/0000-0003-1250-7055</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2020-04, Vol.16 (4), p.450-457 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_proquest_miscellaneous_2375914149 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/535 631/92/221 631/92/607 631/92/72 Amino Acid Sequence Antibiotic resistance Antibiotics Antigens ATP-Binding Cassette Transporters - metabolism Biochemical Engineering Biochemistry Bioorganic Chemistry Biosynthesis Cell Biology Cell Membrane - metabolism Cell surface Chemistry Chemistry and Materials Science Chemistry/Food Science Domains Food industry Food processing industry Glycosyltransferase Glycosyltransferases - metabolism Glycosyltransferases - physiology Hexosyltransferases Klebsiella Klebsiella pneumoniae Klebsiella pneumoniae - metabolism Lipopolysaccharides Lipopolysaccharides - chemistry O Antigens - metabolism O Antigens - ultrastructure Oligosaccharides Polymerization Polysaccharides Polysaccharides, Bacterial - chemistry Saccharides Serotypes Structural analysis |
title | A bifunctional O-antigen polymerase structure reveals a new glycosyltransferase family |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bifunctional%20O-antigen%20polymerase%20structure%20reveals%20a%20new%20glycosyltransferase%20family&rft.jtitle=Nature%20chemical%20biology&rft.au=Clarke,%20Bradley%20R.&rft.date=2020-04-01&rft.volume=16&rft.issue=4&rft.spage=450&rft.epage=457&rft.pages=450-457&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-020-0494-0&rft_dat=%3Cproquest_cross%3E2476759682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2380032746&rft_id=info:pmid/32152541&rfr_iscdi=true |