Fouling propensity of novel TFC membranes with different osmotic and hydraulic pressure driving forces

The feasibility of Forward Osmosis (FO) as an alternative treatment technology to current membrane processes is believed to hinge on its reported lower fouling propensity. In this study, the impacts of constant osmotic pressure and hydraulic pressure driving forces on membrane fouling were investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2020-05, Vol.175, p.115657-115657, Article 115657
Hauptverfasser: Sauchelli Toran, Marc, D’Haese, Arnout, Rodríguez-Roda, Ignasi, Gernjak, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115657
container_issue
container_start_page 115657
container_title Water research (Oxford)
container_volume 175
creator Sauchelli Toran, Marc
D’Haese, Arnout
Rodríguez-Roda, Ignasi
Gernjak, Wolfgang
description The feasibility of Forward Osmosis (FO) as an alternative treatment technology to current membrane processes is believed to hinge on its reported lower fouling propensity. In this study, the impacts of constant osmotic pressure and hydraulic pressure driving forces on membrane fouling were investigated using a novel approach. In each case the cake layer was modelled accounting for all concentration polarisation effects and effective driving force. Compared to the widely employed method of using a non-constant osmotic pressure difference during bench-scale fouling experiments, maintaining a constant osmotic pressure led to 50% more alginate deposited on the same membrane surface (from 13.7 to 21.7 g/m2). This was attributed to a stronger osmotic driving force at the active layer interface and enhanced fouling due to a greater reverse flux of Na+ ions. An applied hydraulic pressure of 1 bar already changed fouling cake deposition and the cake structural parameter shrunk by 224 and 83 μm for the two thin-film composite membranes tested. A detailed analysis of the model however demonstrated that it needs further development, incorporating pore size, porosity and tortuosity of the foulant cake to enable drawing reliable conclusions on the causality of cake layer compaction. [Display omitted] •Maintaining constant osmotic pressure increased fouling beyond baseline conditions.•Increasing reverse salt flux of monovalent Na+ ions enhanced alginate deposition.•Already low feed hydraulic pressure (1 bar) changes foulant cake properties.•An accurate fouling model needs inclusion of dynamic cake structural parameters.•Varying porosity and pore size during foulant accumulation are proposed.
doi_str_mv 10.1016/j.watres.2020.115657
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2375895507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135420301937</els_id><sourcerecordid>2375895507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-867ca0dbd7e568f3a06a0950a025e838630a6a5f80a2811760621bcda434fccf3</originalsourceid><addsrcrecordid>eNp9kM1qGzEUhUVpaNy0b1CKlt2MeyWNNPKmUEycFgLdJGshS1eNzMzIlWYc_PaRmbTLri5czg_nI-QTgzUDpr4e1s92yljWHHh9Malk94asmO42DW9b_ZasAFrRMCHba_K-lAMAcC4278i14EwyzdSKhF2a-zj-psecjjiWOJ1pCnRMJ-zpw25LBxz22Y5Y6HOcnqiPIWDGcaKpDGmKjtrR06ezz7bmuBqDpcwZqc_xdMkNKTssH8hVsH3Bj6_3hjzubh-2P5r7X3c_t9_vGycUnxqtOmfB732HUukgLCgLGwkWuEQttBJglZVBg-WasU6B4mzvvG1FG5wL4oZ8WXLrnD8zlskMsTjs-7ogzcVw0Um9kRK6Km0XqcuplIzBHHMcbD4bBuZC2BzMQthcCJuFcLV9fm2Y9wP6f6a_SKvg2yLAuvMUMZviIo4OfczoJuNT_H_DC9lAj70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375895507</pqid></control><display><type>article</type><title>Fouling propensity of novel TFC membranes with different osmotic and hydraulic pressure driving forces</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sauchelli Toran, Marc ; D’Haese, Arnout ; Rodríguez-Roda, Ignasi ; Gernjak, Wolfgang</creator><creatorcontrib>Sauchelli Toran, Marc ; D’Haese, Arnout ; Rodríguez-Roda, Ignasi ; Gernjak, Wolfgang</creatorcontrib><description>The feasibility of Forward Osmosis (FO) as an alternative treatment technology to current membrane processes is believed to hinge on its reported lower fouling propensity. In this study, the impacts of constant osmotic pressure and hydraulic pressure driving forces on membrane fouling were investigated using a novel approach. In each case the cake layer was modelled accounting for all concentration polarisation effects and effective driving force. Compared to the widely employed method of using a non-constant osmotic pressure difference during bench-scale fouling experiments, maintaining a constant osmotic pressure led to 50% more alginate deposited on the same membrane surface (from 13.7 to 21.7 g/m2). This was attributed to a stronger osmotic driving force at the active layer interface and enhanced fouling due to a greater reverse flux of Na+ ions. An applied hydraulic pressure of 1 bar already changed fouling cake deposition and the cake structural parameter shrunk by 224 and 83 μm for the two thin-film composite membranes tested. A detailed analysis of the model however demonstrated that it needs further development, incorporating pore size, porosity and tortuosity of the foulant cake to enable drawing reliable conclusions on the causality of cake layer compaction. [Display omitted] •Maintaining constant osmotic pressure increased fouling beyond baseline conditions.•Increasing reverse salt flux of monovalent Na+ ions enhanced alginate deposition.•Already low feed hydraulic pressure (1 bar) changes foulant cake properties.•An accurate fouling model needs inclusion of dynamic cake structural parameters.•Varying porosity and pore size during foulant accumulation are proposed.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2020.115657</identifier><identifier>PMID: 32151816</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Alginates ; Driving force ; Forward osmosis ; Membrane fouling ; Membranes, Artificial ; Osmosis ; Osmotic Pressure ; Thin-film composite membrane ; Water Purification</subject><ispartof>Water research (Oxford), 2020-05, Vol.175, p.115657-115657, Article 115657</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-867ca0dbd7e568f3a06a0950a025e838630a6a5f80a2811760621bcda434fccf3</citedby><cites>FETCH-LOGICAL-c362t-867ca0dbd7e568f3a06a0950a025e838630a6a5f80a2811760621bcda434fccf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135420301937$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32151816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sauchelli Toran, Marc</creatorcontrib><creatorcontrib>D’Haese, Arnout</creatorcontrib><creatorcontrib>Rodríguez-Roda, Ignasi</creatorcontrib><creatorcontrib>Gernjak, Wolfgang</creatorcontrib><title>Fouling propensity of novel TFC membranes with different osmotic and hydraulic pressure driving forces</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>The feasibility of Forward Osmosis (FO) as an alternative treatment technology to current membrane processes is believed to hinge on its reported lower fouling propensity. In this study, the impacts of constant osmotic pressure and hydraulic pressure driving forces on membrane fouling were investigated using a novel approach. In each case the cake layer was modelled accounting for all concentration polarisation effects and effective driving force. Compared to the widely employed method of using a non-constant osmotic pressure difference during bench-scale fouling experiments, maintaining a constant osmotic pressure led to 50% more alginate deposited on the same membrane surface (from 13.7 to 21.7 g/m2). This was attributed to a stronger osmotic driving force at the active layer interface and enhanced fouling due to a greater reverse flux of Na+ ions. An applied hydraulic pressure of 1 bar already changed fouling cake deposition and the cake structural parameter shrunk by 224 and 83 μm for the two thin-film composite membranes tested. A detailed analysis of the model however demonstrated that it needs further development, incorporating pore size, porosity and tortuosity of the foulant cake to enable drawing reliable conclusions on the causality of cake layer compaction. [Display omitted] •Maintaining constant osmotic pressure increased fouling beyond baseline conditions.•Increasing reverse salt flux of monovalent Na+ ions enhanced alginate deposition.•Already low feed hydraulic pressure (1 bar) changes foulant cake properties.•An accurate fouling model needs inclusion of dynamic cake structural parameters.•Varying porosity and pore size during foulant accumulation are proposed.</description><subject>Alginates</subject><subject>Driving force</subject><subject>Forward osmosis</subject><subject>Membrane fouling</subject><subject>Membranes, Artificial</subject><subject>Osmosis</subject><subject>Osmotic Pressure</subject><subject>Thin-film composite membrane</subject><subject>Water Purification</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1qGzEUhUVpaNy0b1CKlt2MeyWNNPKmUEycFgLdJGshS1eNzMzIlWYc_PaRmbTLri5czg_nI-QTgzUDpr4e1s92yljWHHh9Malk94asmO42DW9b_ZasAFrRMCHba_K-lAMAcC4278i14EwyzdSKhF2a-zj-psecjjiWOJ1pCnRMJ-zpw25LBxz22Y5Y6HOcnqiPIWDGcaKpDGmKjtrR06ezz7bmuBqDpcwZqc_xdMkNKTssH8hVsH3Bj6_3hjzubh-2P5r7X3c_t9_vGycUnxqtOmfB732HUukgLCgLGwkWuEQttBJglZVBg-WasU6B4mzvvG1FG5wL4oZ8WXLrnD8zlskMsTjs-7ogzcVw0Um9kRK6Km0XqcuplIzBHHMcbD4bBuZC2BzMQthcCJuFcLV9fm2Y9wP6f6a_SKvg2yLAuvMUMZviIo4OfczoJuNT_H_DC9lAj70</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Sauchelli Toran, Marc</creator><creator>D’Haese, Arnout</creator><creator>Rodríguez-Roda, Ignasi</creator><creator>Gernjak, Wolfgang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200515</creationdate><title>Fouling propensity of novel TFC membranes with different osmotic and hydraulic pressure driving forces</title><author>Sauchelli Toran, Marc ; D’Haese, Arnout ; Rodríguez-Roda, Ignasi ; Gernjak, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-867ca0dbd7e568f3a06a0950a025e838630a6a5f80a2811760621bcda434fccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alginates</topic><topic>Driving force</topic><topic>Forward osmosis</topic><topic>Membrane fouling</topic><topic>Membranes, Artificial</topic><topic>Osmosis</topic><topic>Osmotic Pressure</topic><topic>Thin-film composite membrane</topic><topic>Water Purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sauchelli Toran, Marc</creatorcontrib><creatorcontrib>D’Haese, Arnout</creatorcontrib><creatorcontrib>Rodríguez-Roda, Ignasi</creatorcontrib><creatorcontrib>Gernjak, Wolfgang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sauchelli Toran, Marc</au><au>D’Haese, Arnout</au><au>Rodríguez-Roda, Ignasi</au><au>Gernjak, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fouling propensity of novel TFC membranes with different osmotic and hydraulic pressure driving forces</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2020-05-15</date><risdate>2020</risdate><volume>175</volume><spage>115657</spage><epage>115657</epage><pages>115657-115657</pages><artnum>115657</artnum><issn>0043-1354</issn><eissn>1879-2448</eissn><abstract>The feasibility of Forward Osmosis (FO) as an alternative treatment technology to current membrane processes is believed to hinge on its reported lower fouling propensity. In this study, the impacts of constant osmotic pressure and hydraulic pressure driving forces on membrane fouling were investigated using a novel approach. In each case the cake layer was modelled accounting for all concentration polarisation effects and effective driving force. Compared to the widely employed method of using a non-constant osmotic pressure difference during bench-scale fouling experiments, maintaining a constant osmotic pressure led to 50% more alginate deposited on the same membrane surface (from 13.7 to 21.7 g/m2). This was attributed to a stronger osmotic driving force at the active layer interface and enhanced fouling due to a greater reverse flux of Na+ ions. An applied hydraulic pressure of 1 bar already changed fouling cake deposition and the cake structural parameter shrunk by 224 and 83 μm for the two thin-film composite membranes tested. A detailed analysis of the model however demonstrated that it needs further development, incorporating pore size, porosity and tortuosity of the foulant cake to enable drawing reliable conclusions on the causality of cake layer compaction. [Display omitted] •Maintaining constant osmotic pressure increased fouling beyond baseline conditions.•Increasing reverse salt flux of monovalent Na+ ions enhanced alginate deposition.•Already low feed hydraulic pressure (1 bar) changes foulant cake properties.•An accurate fouling model needs inclusion of dynamic cake structural parameters.•Varying porosity and pore size during foulant accumulation are proposed.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32151816</pmid><doi>10.1016/j.watres.2020.115657</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2020-05, Vol.175, p.115657-115657, Article 115657
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_2375895507
source MEDLINE; Elsevier ScienceDirect Journals
subjects Alginates
Driving force
Forward osmosis
Membrane fouling
Membranes, Artificial
Osmosis
Osmotic Pressure
Thin-film composite membrane
Water Purification
title Fouling propensity of novel TFC membranes with different osmotic and hydraulic pressure driving forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fouling%20propensity%20of%20novel%20TFC%20membranes%20with%20different%20osmotic%20and%20hydraulic%20pressure%20driving%20forces&rft.jtitle=Water%20research%20(Oxford)&rft.au=Sauchelli%20Toran,%20Marc&rft.date=2020-05-15&rft.volume=175&rft.spage=115657&rft.epage=115657&rft.pages=115657-115657&rft.artnum=115657&rft.issn=0043-1354&rft.eissn=1879-2448&rft_id=info:doi/10.1016/j.watres.2020.115657&rft_dat=%3Cproquest_cross%3E2375895507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375895507&rft_id=info:pmid/32151816&rft_els_id=S0043135420301937&rfr_iscdi=true