The importance of processing procedures and threshold values in CT scan segmentation of skeletal elements: An example using the immature os coxa

•CT scan processing protocols should remain consistent for accurate results.•Slight variation (e.g., ∼50 HU) in thresholding does not substantially alter resultant surfaces.•Error generated by scan processing is less than allowable measurement error (1–2mm). As the accessibility and utility of virtu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forensic science international 2020-04, Vol.309, p.110232-110232, Article 110232
Hauptverfasser: Stock, Michala K., Garvin, Heather M., Corron, Louise K., Hulse, Cortney N., Cirillo, Laura E., Klales, Alexandra R., Colman, Kerri L., Stull, Kyra E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110232
container_issue
container_start_page 110232
container_title Forensic science international
container_volume 309
creator Stock, Michala K.
Garvin, Heather M.
Corron, Louise K.
Hulse, Cortney N.
Cirillo, Laura E.
Klales, Alexandra R.
Colman, Kerri L.
Stull, Kyra E.
description •CT scan processing protocols should remain consistent for accurate results.•Slight variation (e.g., ∼50 HU) in thresholding does not substantially alter resultant surfaces.•Error generated by scan processing is less than allowable measurement error (1–2mm). As the accessibility and utility of virtual databases of skeletal collections continues to grow, the impact that scan processing procedures has on the accuracy of data obtained from virtual databases remains relatively unknown. This study quantifies the intra- and inter-observer error generated from varying computed tomography (CT) scan processing protocols, including re-segmentation, incrementally varying thresholding value, and data collectors’ selection of the threshold value on a set of virtual subadult pelves. Four observers segmented the subadult ossa coxarum from postmortem CT scans of the fully-fleshed bodies of eleven individuals of varying ages. Segmentation protocol was set, with the exception of each observer selecting their own thresholding value for each scan. The resulting smoothed pelvic surfaces were then compared using deviation analyses. Root mean square error (RMSE), average distance deviation, and maximum deviation distances demonstrated that thresholding values of ∼50 HU (Hounsfield units) are easily tolerated, the surfaces generated are robust to error, and threshold value selection does not systematically vary with user experience. The importance of consistent methodology during segmentation protocol is highlighted here, especially with regards to consistency in both selected thresholding value as well as smoothing protocol, as these variables can affect subsequent measurements of the resultant surfaces.
doi_str_mv 10.1016/j.forsciint.2020.110232
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2375895269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0379073820300943</els_id><sourcerecordid>2417039204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-67de0988191de1844a776df8d34661188d42d29fc95224afc90f8b64d683416a3</originalsourceid><addsrcrecordid>eNqFUcuOEzEQtBCIDQu_AJa4cJngx8Tj4RZFvKSVuISz5bV7Ng4zdrA9q-Uv-GQ6O8seuHDqVru6qstFyBvO1pxx9f64HlIuLoRY14IJnHImpHhCVlx3olFCy6dkxWTXN6yT-oK8KOXIGNtshHpOLqTgG641X5Hf-wPQMJ1SrjY6oGmgp5wclBLizdL6OUOhNnpaD9gd0ujprR1nHIZId3tanI20wM0EsdoaUjyzlB8wQrUjxXJ-KB_oNlK4s9NpBDrf09d77clWVKCpUJfu7EvybLBjgVcP9ZJ8__Rxv_vSXH37_HW3vWqc7PvaqM4D69FCzz1w3ba265QftJetUhy9-VZ40Q-u3wjRWqxs0Neq9UrLlisrL8m7hRc9_kQv1UyhOBhHGyHNxQjZbTQuqx6hb_-BHtOcI15nRMs7JnvBWkR1C8rlVEqGwZxymGz-ZTgz59DM0TyGZs6hmSU03Hz9wD9fT-Af9_6mhIDtAgD8kNsA2SALYFw-ZHDV-BT-K_IHeuitoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417039204</pqid></control><display><type>article</type><title>The importance of processing procedures and threshold values in CT scan segmentation of skeletal elements: An example using the immature os coxa</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Stock, Michala K. ; Garvin, Heather M. ; Corron, Louise K. ; Hulse, Cortney N. ; Cirillo, Laura E. ; Klales, Alexandra R. ; Colman, Kerri L. ; Stull, Kyra E.</creator><creatorcontrib>Stock, Michala K. ; Garvin, Heather M. ; Corron, Louise K. ; Hulse, Cortney N. ; Cirillo, Laura E. ; Klales, Alexandra R. ; Colman, Kerri L. ; Stull, Kyra E.</creatorcontrib><description>•CT scan processing protocols should remain consistent for accurate results.•Slight variation (e.g., ∼50 HU) in thresholding does not substantially alter resultant surfaces.•Error generated by scan processing is less than allowable measurement error (1–2mm). As the accessibility and utility of virtual databases of skeletal collections continues to grow, the impact that scan processing procedures has on the accuracy of data obtained from virtual databases remains relatively unknown. This study quantifies the intra- and inter-observer error generated from varying computed tomography (CT) scan processing protocols, including re-segmentation, incrementally varying thresholding value, and data collectors’ selection of the threshold value on a set of virtual subadult pelves. Four observers segmented the subadult ossa coxarum from postmortem CT scans of the fully-fleshed bodies of eleven individuals of varying ages. Segmentation protocol was set, with the exception of each observer selecting their own thresholding value for each scan. The resulting smoothed pelvic surfaces were then compared using deviation analyses. Root mean square error (RMSE), average distance deviation, and maximum deviation distances demonstrated that thresholding values of ∼50 HU (Hounsfield units) are easily tolerated, the surfaces generated are robust to error, and threshold value selection does not systematically vary with user experience. The importance of consistent methodology during segmentation protocol is highlighted here, especially with regards to consistency in both selected thresholding value as well as smoothing protocol, as these variables can affect subsequent measurements of the resultant surfaces.</description><identifier>ISSN: 0379-0738</identifier><identifier>EISSN: 1872-6283</identifier><identifier>DOI: 10.1016/j.forsciint.2020.110232</identifier><identifier>PMID: 32151881</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Adolescent ; Amira ; Autopsy ; Biological anthropology ; Bones ; Child ; Child, Preschool ; Computed tomography ; Coxa ; Data collection ; Deviation ; Error analysis ; Female ; Forensic Anthropology ; Forensic osteology ; Forensic sciences ; Geomagic ; Humans ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Infant ; Male ; Medical imaging ; Medical research ; Observer Variation ; Pelvic Bones - diagnostic imaging ; Precision ; Root-mean-square errors ; Segmentation ; Software ; Subadult ; Tomography, X-Ray Computed ; Virtual anthropology</subject><ispartof>Forensic science international, 2020-04, Vol.309, p.110232-110232, Article 110232</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>2020. Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-67de0988191de1844a776df8d34661188d42d29fc95224afc90f8b64d683416a3</citedby><cites>FETCH-LOGICAL-c399t-67de0988191de1844a776df8d34661188d42d29fc95224afc90f8b64d683416a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2417039204?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32151881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stock, Michala K.</creatorcontrib><creatorcontrib>Garvin, Heather M.</creatorcontrib><creatorcontrib>Corron, Louise K.</creatorcontrib><creatorcontrib>Hulse, Cortney N.</creatorcontrib><creatorcontrib>Cirillo, Laura E.</creatorcontrib><creatorcontrib>Klales, Alexandra R.</creatorcontrib><creatorcontrib>Colman, Kerri L.</creatorcontrib><creatorcontrib>Stull, Kyra E.</creatorcontrib><title>The importance of processing procedures and threshold values in CT scan segmentation of skeletal elements: An example using the immature os coxa</title><title>Forensic science international</title><addtitle>Forensic Sci Int</addtitle><description>•CT scan processing protocols should remain consistent for accurate results.•Slight variation (e.g., ∼50 HU) in thresholding does not substantially alter resultant surfaces.•Error generated by scan processing is less than allowable measurement error (1–2mm). As the accessibility and utility of virtual databases of skeletal collections continues to grow, the impact that scan processing procedures has on the accuracy of data obtained from virtual databases remains relatively unknown. This study quantifies the intra- and inter-observer error generated from varying computed tomography (CT) scan processing protocols, including re-segmentation, incrementally varying thresholding value, and data collectors’ selection of the threshold value on a set of virtual subadult pelves. Four observers segmented the subadult ossa coxarum from postmortem CT scans of the fully-fleshed bodies of eleven individuals of varying ages. Segmentation protocol was set, with the exception of each observer selecting their own thresholding value for each scan. The resulting smoothed pelvic surfaces were then compared using deviation analyses. Root mean square error (RMSE), average distance deviation, and maximum deviation distances demonstrated that thresholding values of ∼50 HU (Hounsfield units) are easily tolerated, the surfaces generated are robust to error, and threshold value selection does not systematically vary with user experience. The importance of consistent methodology during segmentation protocol is highlighted here, especially with regards to consistency in both selected thresholding value as well as smoothing protocol, as these variables can affect subsequent measurements of the resultant surfaces.</description><subject>Adolescent</subject><subject>Amira</subject><subject>Autopsy</subject><subject>Biological anthropology</subject><subject>Bones</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Computed tomography</subject><subject>Coxa</subject><subject>Data collection</subject><subject>Deviation</subject><subject>Error analysis</subject><subject>Female</subject><subject>Forensic Anthropology</subject><subject>Forensic osteology</subject><subject>Forensic sciences</subject><subject>Geomagic</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional</subject><subject>Infant</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Observer Variation</subject><subject>Pelvic Bones - diagnostic imaging</subject><subject>Precision</subject><subject>Root-mean-square errors</subject><subject>Segmentation</subject><subject>Software</subject><subject>Subadult</subject><subject>Tomography, X-Ray Computed</subject><subject>Virtual anthropology</subject><issn>0379-0738</issn><issn>1872-6283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUcuOEzEQtBCIDQu_AJa4cJngx8Tj4RZFvKSVuISz5bV7Ng4zdrA9q-Uv-GQ6O8seuHDqVru6qstFyBvO1pxx9f64HlIuLoRY14IJnHImpHhCVlx3olFCy6dkxWTXN6yT-oK8KOXIGNtshHpOLqTgG641X5Hf-wPQMJ1SrjY6oGmgp5wclBLizdL6OUOhNnpaD9gd0ujprR1nHIZId3tanI20wM0EsdoaUjyzlB8wQrUjxXJ-KB_oNlK4s9NpBDrf09d77clWVKCpUJfu7EvybLBjgVcP9ZJ8__Rxv_vSXH37_HW3vWqc7PvaqM4D69FCzz1w3ba265QftJetUhy9-VZ40Q-u3wjRWqxs0Neq9UrLlisrL8m7hRc9_kQv1UyhOBhHGyHNxQjZbTQuqx6hb_-BHtOcI15nRMs7JnvBWkR1C8rlVEqGwZxymGz-ZTgz59DM0TyGZs6hmSU03Hz9wD9fT-Af9_6mhIDtAgD8kNsA2SALYFw-ZHDV-BT-K_IHeuitoQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Stock, Michala K.</creator><creator>Garvin, Heather M.</creator><creator>Corron, Louise K.</creator><creator>Hulse, Cortney N.</creator><creator>Cirillo, Laura E.</creator><creator>Klales, Alexandra R.</creator><creator>Colman, Kerri L.</creator><creator>Stull, Kyra E.</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202004</creationdate><title>The importance of processing procedures and threshold values in CT scan segmentation of skeletal elements: An example using the immature os coxa</title><author>Stock, Michala K. ; Garvin, Heather M. ; Corron, Louise K. ; Hulse, Cortney N. ; Cirillo, Laura E. ; Klales, Alexandra R. ; Colman, Kerri L. ; Stull, Kyra E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-67de0988191de1844a776df8d34661188d42d29fc95224afc90f8b64d683416a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescent</topic><topic>Amira</topic><topic>Autopsy</topic><topic>Biological anthropology</topic><topic>Bones</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Computed tomography</topic><topic>Coxa</topic><topic>Data collection</topic><topic>Deviation</topic><topic>Error analysis</topic><topic>Female</topic><topic>Forensic Anthropology</topic><topic>Forensic osteology</topic><topic>Forensic sciences</topic><topic>Geomagic</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional</topic><topic>Infant</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Observer Variation</topic><topic>Pelvic Bones - diagnostic imaging</topic><topic>Precision</topic><topic>Root-mean-square errors</topic><topic>Segmentation</topic><topic>Software</topic><topic>Subadult</topic><topic>Tomography, X-Ray Computed</topic><topic>Virtual anthropology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stock, Michala K.</creatorcontrib><creatorcontrib>Garvin, Heather M.</creatorcontrib><creatorcontrib>Corron, Louise K.</creatorcontrib><creatorcontrib>Hulse, Cortney N.</creatorcontrib><creatorcontrib>Cirillo, Laura E.</creatorcontrib><creatorcontrib>Klales, Alexandra R.</creatorcontrib><creatorcontrib>Colman, Kerri L.</creatorcontrib><creatorcontrib>Stull, Kyra E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Forensic science international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stock, Michala K.</au><au>Garvin, Heather M.</au><au>Corron, Louise K.</au><au>Hulse, Cortney N.</au><au>Cirillo, Laura E.</au><au>Klales, Alexandra R.</au><au>Colman, Kerri L.</au><au>Stull, Kyra E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The importance of processing procedures and threshold values in CT scan segmentation of skeletal elements: An example using the immature os coxa</atitle><jtitle>Forensic science international</jtitle><addtitle>Forensic Sci Int</addtitle><date>2020-04</date><risdate>2020</risdate><volume>309</volume><spage>110232</spage><epage>110232</epage><pages>110232-110232</pages><artnum>110232</artnum><issn>0379-0738</issn><eissn>1872-6283</eissn><abstract>•CT scan processing protocols should remain consistent for accurate results.•Slight variation (e.g., ∼50 HU) in thresholding does not substantially alter resultant surfaces.•Error generated by scan processing is less than allowable measurement error (1–2mm). As the accessibility and utility of virtual databases of skeletal collections continues to grow, the impact that scan processing procedures has on the accuracy of data obtained from virtual databases remains relatively unknown. This study quantifies the intra- and inter-observer error generated from varying computed tomography (CT) scan processing protocols, including re-segmentation, incrementally varying thresholding value, and data collectors’ selection of the threshold value on a set of virtual subadult pelves. Four observers segmented the subadult ossa coxarum from postmortem CT scans of the fully-fleshed bodies of eleven individuals of varying ages. Segmentation protocol was set, with the exception of each observer selecting their own thresholding value for each scan. The resulting smoothed pelvic surfaces were then compared using deviation analyses. Root mean square error (RMSE), average distance deviation, and maximum deviation distances demonstrated that thresholding values of ∼50 HU (Hounsfield units) are easily tolerated, the surfaces generated are robust to error, and threshold value selection does not systematically vary with user experience. The importance of consistent methodology during segmentation protocol is highlighted here, especially with regards to consistency in both selected thresholding value as well as smoothing protocol, as these variables can affect subsequent measurements of the resultant surfaces.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>32151881</pmid><doi>10.1016/j.forsciint.2020.110232</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0379-0738
ispartof Forensic science international, 2020-04, Vol.309, p.110232-110232, Article 110232
issn 0379-0738
1872-6283
language eng
recordid cdi_proquest_miscellaneous_2375895269
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Adolescent
Amira
Autopsy
Biological anthropology
Bones
Child
Child, Preschool
Computed tomography
Coxa
Data collection
Deviation
Error analysis
Female
Forensic Anthropology
Forensic osteology
Forensic sciences
Geomagic
Humans
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Infant
Male
Medical imaging
Medical research
Observer Variation
Pelvic Bones - diagnostic imaging
Precision
Root-mean-square errors
Segmentation
Software
Subadult
Tomography, X-Ray Computed
Virtual anthropology
title The importance of processing procedures and threshold values in CT scan segmentation of skeletal elements: An example using the immature os coxa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20importance%20of%20processing%20procedures%20and%20threshold%20values%20in%20CT%20scan%20segmentation%20of%20skeletal%20elements:%20An%20example%20using%20the%20immature%20os%20coxa&rft.jtitle=Forensic%20science%20international&rft.au=Stock,%20Michala%20K.&rft.date=2020-04&rft.volume=309&rft.spage=110232&rft.epage=110232&rft.pages=110232-110232&rft.artnum=110232&rft.issn=0379-0738&rft.eissn=1872-6283&rft_id=info:doi/10.1016/j.forsciint.2020.110232&rft_dat=%3Cproquest_cross%3E2417039204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417039204&rft_id=info:pmid/32151881&rft_els_id=S0379073820300943&rfr_iscdi=true