Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores

Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffrac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2020-04, Vol.31 (4), p.1052-1062
Hauptverfasser: Zhang, Yang, Raymo, Françisco M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1062
container_issue 4
container_start_page 1052
container_title Bioconjugate chemistry
container_volume 31
creator Zhang, Yang
Raymo, Françisco M
description Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffraction is very much needed to enable the investigation of the fundamental factors regulating cellular functions at the molecular level. In this context, the chemical synthesis of molecular constructs with photoactivatable fluorescence and the ability to label subcellular components of live cells can have transformative implications. Indeed, the fluorescence of the resulting assemblies can be activated with spatiotemporal control, even in the intracellular environment, to permit the sequential localization of individual emissive labels with precision at the nanometer level and the gradual reconstruction of images with subdiffraction resolution. The implementation of these operating principles for subdiffraction imaging, however, is only possible if demanding photochemical and photophysical requirements to enable photoactivation and localization as well as stringent structural requisites to allow the covalent labeling of intracellular targets in live cells are satisfied. Because of these complications, only a few synthetic photoactivatable fluorophores with appropriate performance for live-cell imaging at the nanoscale have been developed so far. Significant synthetic efforts in conjunction with spectroscopic analyses are still very much needed to advance this promising research area further and turn photoactivatable fluorophores into the imaging probes of choice for the investigation of live cells.
doi_str_mv 10.1021/acs.bioconjchem.0c00073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2375876217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398189573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-7c90ee5bf6adfe0e474d0cadd98a46f4ee0ccdbf188fd50c2c5db89607a78e163</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq2qVflo_wJE6oVLlrGdxM4RVixFWlEO9NBTNLEnm6ySeImTrfj3GGWLUC-cZjR65h37Yeycw4KD4Jdo_KJsnHH91tTULcAAgJKf2DFPBcSJ5uJz6CGRMdcgjtiJ99uA5FyLr-xICp6CzOGY_Vk3e4qX1LbRXYebpt9EOEZjTdE99s4bbCn624x1dD1fmzY4YhmG2NvooXajQzM2-8Nw1U5ucLvaDeS_sS8Vtp6-H-op-726eVz-jNe_bu-WV-sYpU7HWJkciNKyytBWBJSoxIJBa3ONSVYlRGCMLSuudWVTMMKkttR5BgqVJp7JU3Yx5-4G9zSRH4uu8SZ8CHtyky-EVKlWmeAqoD_-Q7duGvrwukDlmus8VTJQaqbM4LwfqCp2Q9Ph8FxwKF7tF8F-8c5-cbAfNs8O-VPZkX3b-6c7AHIGXhPebn8U-wJEIpfv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398189573</pqid></control><display><type>article</type><title>Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhang, Yang ; Raymo, Françisco M</creator><creatorcontrib>Zhang, Yang ; Raymo, Françisco M</creatorcontrib><description>Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffraction is very much needed to enable the investigation of the fundamental factors regulating cellular functions at the molecular level. In this context, the chemical synthesis of molecular constructs with photoactivatable fluorescence and the ability to label subcellular components of live cells can have transformative implications. Indeed, the fluorescence of the resulting assemblies can be activated with spatiotemporal control, even in the intracellular environment, to permit the sequential localization of individual emissive labels with precision at the nanometer level and the gradual reconstruction of images with subdiffraction resolution. The implementation of these operating principles for subdiffraction imaging, however, is only possible if demanding photochemical and photophysical requirements to enable photoactivation and localization as well as stringent structural requisites to allow the covalent labeling of intracellular targets in live cells are satisfied. Because of these complications, only a few synthetic photoactivatable fluorophores with appropriate performance for live-cell imaging at the nanoscale have been developed so far. Significant synthetic efforts in conjunction with spectroscopic analyses are still very much needed to advance this promising research area further and turn photoactivatable fluorophores into the imaging probes of choice for the investigation of live cells.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.0c00073</identifier><identifier>PMID: 32150390</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Line ; Cell Survival ; Chemical compounds ; Chemical synthesis ; Complications ; Diffraction ; Fluorescence ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; Fluorophores ; Humans ; Image reconstruction ; Intracellular ; Intracellular Space - metabolism ; Labels ; Light ; Localization ; Molecular Imaging - methods ; Nanotechnology - methods ; Photoactivation ; Photochemicals ; Probes ; Spatial discrimination ; Spatial resolution ; Topical Review</subject><ispartof>Bioconjugate chemistry, 2020-04, Vol.31 (4), p.1052-1062</ispartof><rights>Copyright American Chemical Society Apr 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-7c90ee5bf6adfe0e474d0cadd98a46f4ee0ccdbf188fd50c2c5db89607a78e163</citedby><cites>FETCH-LOGICAL-a385t-7c90ee5bf6adfe0e474d0cadd98a46f4ee0ccdbf188fd50c2c5db89607a78e163</cites><orcidid>0000-0003-1011-3001 ; 0000-0002-6163-6606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.0c00073$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00073$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32150390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Raymo, Françisco M</creatorcontrib><title>Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffraction is very much needed to enable the investigation of the fundamental factors regulating cellular functions at the molecular level. In this context, the chemical synthesis of molecular constructs with photoactivatable fluorescence and the ability to label subcellular components of live cells can have transformative implications. Indeed, the fluorescence of the resulting assemblies can be activated with spatiotemporal control, even in the intracellular environment, to permit the sequential localization of individual emissive labels with precision at the nanometer level and the gradual reconstruction of images with subdiffraction resolution. The implementation of these operating principles for subdiffraction imaging, however, is only possible if demanding photochemical and photophysical requirements to enable photoactivation and localization as well as stringent structural requisites to allow the covalent labeling of intracellular targets in live cells are satisfied. Because of these complications, only a few synthetic photoactivatable fluorophores with appropriate performance for live-cell imaging at the nanoscale have been developed so far. Significant synthetic efforts in conjunction with spectroscopic analyses are still very much needed to advance this promising research area further and turn photoactivatable fluorophores into the imaging probes of choice for the investigation of live cells.</description><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Chemical compounds</subject><subject>Chemical synthesis</subject><subject>Complications</subject><subject>Diffraction</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Fluorophores</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>Intracellular</subject><subject>Intracellular Space - metabolism</subject><subject>Labels</subject><subject>Light</subject><subject>Localization</subject><subject>Molecular Imaging - methods</subject><subject>Nanotechnology - methods</subject><subject>Photoactivation</subject><subject>Photochemicals</subject><subject>Probes</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Topical Review</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P3DAQhq2qVflo_wJE6oVLlrGdxM4RVixFWlEO9NBTNLEnm6ySeImTrfj3GGWLUC-cZjR65h37Yeycw4KD4Jdo_KJsnHH91tTULcAAgJKf2DFPBcSJ5uJz6CGRMdcgjtiJ99uA5FyLr-xICp6CzOGY_Vk3e4qX1LbRXYebpt9EOEZjTdE99s4bbCn624x1dD1fmzY4YhmG2NvooXajQzM2-8Nw1U5ucLvaDeS_sS8Vtp6-H-op-726eVz-jNe_bu-WV-sYpU7HWJkciNKyytBWBJSoxIJBa3ONSVYlRGCMLSuudWVTMMKkttR5BgqVJp7JU3Yx5-4G9zSRH4uu8SZ8CHtyky-EVKlWmeAqoD_-Q7duGvrwukDlmus8VTJQaqbM4LwfqCp2Q9Ph8FxwKF7tF8F-8c5-cbAfNs8O-VPZkX3b-6c7AHIGXhPebn8U-wJEIpfv</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Zhang, Yang</creator><creator>Raymo, Françisco M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1011-3001</orcidid><orcidid>https://orcid.org/0000-0002-6163-6606</orcidid></search><sort><creationdate>20200415</creationdate><title>Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores</title><author>Zhang, Yang ; Raymo, Françisco M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-7c90ee5bf6adfe0e474d0cadd98a46f4ee0ccdbf188fd50c2c5db89607a78e163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Chemical compounds</topic><topic>Chemical synthesis</topic><topic>Complications</topic><topic>Diffraction</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Fluorophores</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>Intracellular</topic><topic>Intracellular Space - metabolism</topic><topic>Labels</topic><topic>Light</topic><topic>Localization</topic><topic>Molecular Imaging - methods</topic><topic>Nanotechnology - methods</topic><topic>Photoactivation</topic><topic>Photochemicals</topic><topic>Probes</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Topical Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Raymo, Françisco M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yang</au><au>Raymo, Françisco M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2020-04-15</date><risdate>2020</risdate><volume>31</volume><issue>4</issue><spage>1052</spage><epage>1062</epage><pages>1052-1062</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffraction is very much needed to enable the investigation of the fundamental factors regulating cellular functions at the molecular level. In this context, the chemical synthesis of molecular constructs with photoactivatable fluorescence and the ability to label subcellular components of live cells can have transformative implications. Indeed, the fluorescence of the resulting assemblies can be activated with spatiotemporal control, even in the intracellular environment, to permit the sequential localization of individual emissive labels with precision at the nanometer level and the gradual reconstruction of images with subdiffraction resolution. The implementation of these operating principles for subdiffraction imaging, however, is only possible if demanding photochemical and photophysical requirements to enable photoactivation and localization as well as stringent structural requisites to allow the covalent labeling of intracellular targets in live cells are satisfied. Because of these complications, only a few synthetic photoactivatable fluorophores with appropriate performance for live-cell imaging at the nanoscale have been developed so far. Significant synthetic efforts in conjunction with spectroscopic analyses are still very much needed to advance this promising research area further and turn photoactivatable fluorophores into the imaging probes of choice for the investigation of live cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32150390</pmid><doi>10.1021/acs.bioconjchem.0c00073</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1011-3001</orcidid><orcidid>https://orcid.org/0000-0002-6163-6606</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2020-04, Vol.31 (4), p.1052-1062
issn 1043-1802
1520-4812
language eng
recordid cdi_proquest_miscellaneous_2375876217
source MEDLINE; ACS Publications
subjects Cell Line
Cell Survival
Chemical compounds
Chemical synthesis
Complications
Diffraction
Fluorescence
Fluorescent Dyes - chemistry
Fluorescent Dyes - metabolism
Fluorophores
Humans
Image reconstruction
Intracellular
Intracellular Space - metabolism
Labels
Light
Localization
Molecular Imaging - methods
Nanotechnology - methods
Photoactivation
Photochemicals
Probes
Spatial discrimination
Spatial resolution
Topical Review
title Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Live-Cell%20Imaging%20at%20the%20Nanoscale%20with%20Bioconjugatable%20and%20Photoactivatable%20Fluorophores&rft.jtitle=Bioconjugate%20chemistry&rft.au=Zhang,%20Yang&rft.date=2020-04-15&rft.volume=31&rft.issue=4&rft.spage=1052&rft.epage=1062&rft.pages=1052-1062&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.0c00073&rft_dat=%3Cproquest_cross%3E2398189573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398189573&rft_id=info:pmid/32150390&rfr_iscdi=true