Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores
Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffrac...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2020-04, Vol.31 (4), p.1052-1062 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1062 |
---|---|
container_issue | 4 |
container_start_page | 1052 |
container_title | Bioconjugate chemistry |
container_volume | 31 |
creator | Zhang, Yang Raymo, Françisco M |
description | Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffraction is very much needed to enable the investigation of the fundamental factors regulating cellular functions at the molecular level. In this context, the chemical synthesis of molecular constructs with photoactivatable fluorescence and the ability to label subcellular components of live cells can have transformative implications. Indeed, the fluorescence of the resulting assemblies can be activated with spatiotemporal control, even in the intracellular environment, to permit the sequential localization of individual emissive labels with precision at the nanometer level and the gradual reconstruction of images with subdiffraction resolution. The implementation of these operating principles for subdiffraction imaging, however, is only possible if demanding photochemical and photophysical requirements to enable photoactivation and localization as well as stringent structural requisites to allow the covalent labeling of intracellular targets in live cells are satisfied. Because of these complications, only a few synthetic photoactivatable fluorophores with appropriate performance for live-cell imaging at the nanoscale have been developed so far. Significant synthetic efforts in conjunction with spectroscopic analyses are still very much needed to advance this promising research area further and turn photoactivatable fluorophores into the imaging probes of choice for the investigation of live cells. |
doi_str_mv | 10.1021/acs.bioconjchem.0c00073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2375876217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398189573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-7c90ee5bf6adfe0e474d0cadd98a46f4ee0ccdbf188fd50c2c5db89607a78e163</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq2qVflo_wJE6oVLlrGdxM4RVixFWlEO9NBTNLEnm6ySeImTrfj3GGWLUC-cZjR65h37Yeycw4KD4Jdo_KJsnHH91tTULcAAgJKf2DFPBcSJ5uJz6CGRMdcgjtiJ99uA5FyLr-xICp6CzOGY_Vk3e4qX1LbRXYebpt9EOEZjTdE99s4bbCn624x1dD1fmzY4YhmG2NvooXajQzM2-8Nw1U5ucLvaDeS_sS8Vtp6-H-op-726eVz-jNe_bu-WV-sYpU7HWJkciNKyytBWBJSoxIJBa3ONSVYlRGCMLSuudWVTMMKkttR5BgqVJp7JU3Yx5-4G9zSRH4uu8SZ8CHtyky-EVKlWmeAqoD_-Q7duGvrwukDlmus8VTJQaqbM4LwfqCp2Q9Ph8FxwKF7tF8F-8c5-cbAfNs8O-VPZkX3b-6c7AHIGXhPebn8U-wJEIpfv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398189573</pqid></control><display><type>article</type><title>Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhang, Yang ; Raymo, Françisco M</creator><creatorcontrib>Zhang, Yang ; Raymo, Françisco M</creatorcontrib><description>Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffraction is very much needed to enable the investigation of the fundamental factors regulating cellular functions at the molecular level. In this context, the chemical synthesis of molecular constructs with photoactivatable fluorescence and the ability to label subcellular components of live cells can have transformative implications. Indeed, the fluorescence of the resulting assemblies can be activated with spatiotemporal control, even in the intracellular environment, to permit the sequential localization of individual emissive labels with precision at the nanometer level and the gradual reconstruction of images with subdiffraction resolution. The implementation of these operating principles for subdiffraction imaging, however, is only possible if demanding photochemical and photophysical requirements to enable photoactivation and localization as well as stringent structural requisites to allow the covalent labeling of intracellular targets in live cells are satisfied. Because of these complications, only a few synthetic photoactivatable fluorophores with appropriate performance for live-cell imaging at the nanoscale have been developed so far. Significant synthetic efforts in conjunction with spectroscopic analyses are still very much needed to advance this promising research area further and turn photoactivatable fluorophores into the imaging probes of choice for the investigation of live cells.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.0c00073</identifier><identifier>PMID: 32150390</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Line ; Cell Survival ; Chemical compounds ; Chemical synthesis ; Complications ; Diffraction ; Fluorescence ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; Fluorophores ; Humans ; Image reconstruction ; Intracellular ; Intracellular Space - metabolism ; Labels ; Light ; Localization ; Molecular Imaging - methods ; Nanotechnology - methods ; Photoactivation ; Photochemicals ; Probes ; Spatial discrimination ; Spatial resolution ; Topical Review</subject><ispartof>Bioconjugate chemistry, 2020-04, Vol.31 (4), p.1052-1062</ispartof><rights>Copyright American Chemical Society Apr 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-7c90ee5bf6adfe0e474d0cadd98a46f4ee0ccdbf188fd50c2c5db89607a78e163</citedby><cites>FETCH-LOGICAL-a385t-7c90ee5bf6adfe0e474d0cadd98a46f4ee0ccdbf188fd50c2c5db89607a78e163</cites><orcidid>0000-0003-1011-3001 ; 0000-0002-6163-6606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.0c00073$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00073$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32150390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Raymo, Françisco M</creatorcontrib><title>Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffraction is very much needed to enable the investigation of the fundamental factors regulating cellular functions at the molecular level. In this context, the chemical synthesis of molecular constructs with photoactivatable fluorescence and the ability to label subcellular components of live cells can have transformative implications. Indeed, the fluorescence of the resulting assemblies can be activated with spatiotemporal control, even in the intracellular environment, to permit the sequential localization of individual emissive labels with precision at the nanometer level and the gradual reconstruction of images with subdiffraction resolution. The implementation of these operating principles for subdiffraction imaging, however, is only possible if demanding photochemical and photophysical requirements to enable photoactivation and localization as well as stringent structural requisites to allow the covalent labeling of intracellular targets in live cells are satisfied. Because of these complications, only a few synthetic photoactivatable fluorophores with appropriate performance for live-cell imaging at the nanoscale have been developed so far. Significant synthetic efforts in conjunction with spectroscopic analyses are still very much needed to advance this promising research area further and turn photoactivatable fluorophores into the imaging probes of choice for the investigation of live cells.</description><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Chemical compounds</subject><subject>Chemical synthesis</subject><subject>Complications</subject><subject>Diffraction</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Fluorophores</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>Intracellular</subject><subject>Intracellular Space - metabolism</subject><subject>Labels</subject><subject>Light</subject><subject>Localization</subject><subject>Molecular Imaging - methods</subject><subject>Nanotechnology - methods</subject><subject>Photoactivation</subject><subject>Photochemicals</subject><subject>Probes</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Topical Review</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P3DAQhq2qVflo_wJE6oVLlrGdxM4RVixFWlEO9NBTNLEnm6ySeImTrfj3GGWLUC-cZjR65h37Yeycw4KD4Jdo_KJsnHH91tTULcAAgJKf2DFPBcSJ5uJz6CGRMdcgjtiJ99uA5FyLr-xICp6CzOGY_Vk3e4qX1LbRXYebpt9EOEZjTdE99s4bbCn624x1dD1fmzY4YhmG2NvooXajQzM2-8Nw1U5ucLvaDeS_sS8Vtp6-H-op-726eVz-jNe_bu-WV-sYpU7HWJkciNKyytBWBJSoxIJBa3ONSVYlRGCMLSuudWVTMMKkttR5BgqVJp7JU3Yx5-4G9zSRH4uu8SZ8CHtyky-EVKlWmeAqoD_-Q7duGvrwukDlmus8VTJQaqbM4LwfqCp2Q9Ph8FxwKF7tF8F-8c5-cbAfNs8O-VPZkX3b-6c7AHIGXhPebn8U-wJEIpfv</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Zhang, Yang</creator><creator>Raymo, Françisco M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1011-3001</orcidid><orcidid>https://orcid.org/0000-0002-6163-6606</orcidid></search><sort><creationdate>20200415</creationdate><title>Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores</title><author>Zhang, Yang ; Raymo, Françisco M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-7c90ee5bf6adfe0e474d0cadd98a46f4ee0ccdbf188fd50c2c5db89607a78e163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Chemical compounds</topic><topic>Chemical synthesis</topic><topic>Complications</topic><topic>Diffraction</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Fluorophores</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>Intracellular</topic><topic>Intracellular Space - metabolism</topic><topic>Labels</topic><topic>Light</topic><topic>Localization</topic><topic>Molecular Imaging - methods</topic><topic>Nanotechnology - methods</topic><topic>Photoactivation</topic><topic>Photochemicals</topic><topic>Probes</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Topical Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Raymo, Françisco M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yang</au><au>Raymo, Françisco M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2020-04-15</date><risdate>2020</risdate><volume>31</volume><issue>4</issue><spage>1052</spage><epage>1062</epage><pages>1052-1062</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffraction is very much needed to enable the investigation of the fundamental factors regulating cellular functions at the molecular level. In this context, the chemical synthesis of molecular constructs with photoactivatable fluorescence and the ability to label subcellular components of live cells can have transformative implications. Indeed, the fluorescence of the resulting assemblies can be activated with spatiotemporal control, even in the intracellular environment, to permit the sequential localization of individual emissive labels with precision at the nanometer level and the gradual reconstruction of images with subdiffraction resolution. The implementation of these operating principles for subdiffraction imaging, however, is only possible if demanding photochemical and photophysical requirements to enable photoactivation and localization as well as stringent structural requisites to allow the covalent labeling of intracellular targets in live cells are satisfied. Because of these complications, only a few synthetic photoactivatable fluorophores with appropriate performance for live-cell imaging at the nanoscale have been developed so far. Significant synthetic efforts in conjunction with spectroscopic analyses are still very much needed to advance this promising research area further and turn photoactivatable fluorophores into the imaging probes of choice for the investigation of live cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32150390</pmid><doi>10.1021/acs.bioconjchem.0c00073</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1011-3001</orcidid><orcidid>https://orcid.org/0000-0002-6163-6606</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-1802 |
ispartof | Bioconjugate chemistry, 2020-04, Vol.31 (4), p.1052-1062 |
issn | 1043-1802 1520-4812 |
language | eng |
recordid | cdi_proquest_miscellaneous_2375876217 |
source | MEDLINE; ACS Publications |
subjects | Cell Line Cell Survival Chemical compounds Chemical synthesis Complications Diffraction Fluorescence Fluorescent Dyes - chemistry Fluorescent Dyes - metabolism Fluorophores Humans Image reconstruction Intracellular Intracellular Space - metabolism Labels Light Localization Molecular Imaging - methods Nanotechnology - methods Photoactivation Photochemicals Probes Spatial discrimination Spatial resolution Topical Review |
title | Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Live-Cell%20Imaging%20at%20the%20Nanoscale%20with%20Bioconjugatable%20and%20Photoactivatable%20Fluorophores&rft.jtitle=Bioconjugate%20chemistry&rft.au=Zhang,%20Yang&rft.date=2020-04-15&rft.volume=31&rft.issue=4&rft.spage=1052&rft.epage=1062&rft.pages=1052-1062&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.0c00073&rft_dat=%3Cproquest_cross%3E2398189573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398189573&rft_id=info:pmid/32150390&rfr_iscdi=true |