Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell
Improving the quality of perovskite poly‐crystalline film is essential for the performance of associated solar cells approaching their theoretical limit efficiency. Pinholes, unwanted defects, and nonperovskite phase can be easily generated during film formation, hampering device performance and sta...
Gespeichert in:
Veröffentlicht in: | Advanced science 2020-03, Vol.7 (5), p.1903368-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | 1903368 |
container_title | Advanced science |
container_volume | 7 |
creator | Li, Yong Shi, Junwei Zheng, Jianghui Bing, Jueming Yuan, Jianyu Cho, Yongyoon Tang, Shi Zhang, Meng Yao, Yin Lau, Cho Fai Jonathan Lee, Da Seul Liao, Chwenhaw Green, Martin A. Huang, Shujuan Ma, Wanli Ho‐Baillie, Anita W. Y. |
description | Improving the quality of perovskite poly‐crystalline film is essential for the performance of associated solar cells approaching their theoretical limit efficiency. Pinholes, unwanted defects, and nonperovskite phase can be easily generated during film formation, hampering device performance and stability. Here, a simple method is introduced to prepare perovskite film with excellent optoelectronic property by using acetic acid (Ac) as an antisolvent to control perovskite crystallization. Results from a variety of characterizations suggest that the small amount of Ac not only reduces the perovskite film roughness and residual PbI2 but also generates a passivation effect from the electron‐rich carbonyl group (CO) in Ac. The best devices produce a PCE of 22.0% for Cs0.05FA0.80MA0.15Pb(I0.85Br0.15)3 and 23.0% for Cs0.05FA0.90MA0.05Pb(I0.95Br0.05)3 on 0.159 cm2 with negligible hysteresis. This further improves device stability producing a cell that maintained 96% of its initial efficiency after 2400 h storage in ambient environment (with controlled relative humidity (RH) |
doi_str_mv | 10.1002/advs.201903368 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2375866090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_464ccd803db24b398990fde12bf883ae</doaj_id><sourcerecordid>2375866090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5952-353e6ce896b5308ec246450ead773182a9b6ada8c2cf8fb0bac21473de90c78c3</originalsourceid><addsrcrecordid>eNqFks1uEzEURi0EolXoliWyxIZNgv9mxrNBGoXSVooEUgpby2PfSR2ccbEnQcOqj8Az8iQ4pEQtG7yxZR8f-V5_CL2kZEYJYW-13aUZI7QmnJfyCTpltJZTLoV4-mB9gs5SWhNCaMErQeVzdMIZLQSR8hT1jYHBGdwYZ3GTkksDWDyPYxq09-6HHlzo8XKIeoDViLsQ8aVb3eDzrnPGQW9GrHuLF6Ff_br7eQ1xk2HdesCfIIZd-uoGwMvgdcRz8P4FetZpn-Dsfp6gzx_Or-eX08XHi6t5s5iaoi7YlBccSgOyLtuCEwmGiVIUBLStKk4l03VbaqulYaaTXUtabRgVFbdQE1NJwyfo6uC1Qa_VbXQbHUcVtFN_NkJcKR1z3R5UNhtjJeG2ZaLltaxr0lmgrO2k5Bqy693BdbttN2AN9Lkb_pH08UnvbtQq7FRFijxoFry5F8TwbQtpUBuXTO6G7iFsk2K8KmRZkvyNE_T6H3QdtrHPrdpTRFRSyD01O1AmhpQidMfHUKL2yVD7ZKhjMvKFVw9LOOJ_c5ABcQC-Ow_jf3Sqef9lmS8y_htGaMYq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370478480</pqid></control><display><type>article</type><title>Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell</title><source>Wiley-Blackwell Journals</source><source>Open Access: PubMed Central</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Li, Yong ; Shi, Junwei ; Zheng, Jianghui ; Bing, Jueming ; Yuan, Jianyu ; Cho, Yongyoon ; Tang, Shi ; Zhang, Meng ; Yao, Yin ; Lau, Cho Fai Jonathan ; Lee, Da Seul ; Liao, Chwenhaw ; Green, Martin A. ; Huang, Shujuan ; Ma, Wanli ; Ho‐Baillie, Anita W. Y.</creator><creatorcontrib>Li, Yong ; Shi, Junwei ; Zheng, Jianghui ; Bing, Jueming ; Yuan, Jianyu ; Cho, Yongyoon ; Tang, Shi ; Zhang, Meng ; Yao, Yin ; Lau, Cho Fai Jonathan ; Lee, Da Seul ; Liao, Chwenhaw ; Green, Martin A. ; Huang, Shujuan ; Ma, Wanli ; Ho‐Baillie, Anita W. Y.</creatorcontrib><description>Improving the quality of perovskite poly‐crystalline film is essential for the performance of associated solar cells approaching their theoretical limit efficiency. Pinholes, unwanted defects, and nonperovskite phase can be easily generated during film formation, hampering device performance and stability. Here, a simple method is introduced to prepare perovskite film with excellent optoelectronic property by using acetic acid (Ac) as an antisolvent to control perovskite crystallization. Results from a variety of characterizations suggest that the small amount of Ac not only reduces the perovskite film roughness and residual PbI2 but also generates a passivation effect from the electron‐rich carbonyl group (CO) in Ac. The best devices produce a PCE of 22.0% for Cs0.05FA0.80MA0.15Pb(I0.85Br0.15)3 and 23.0% for Cs0.05FA0.90MA0.05Pb(I0.95Br0.05)3 on 0.159 cm2 with negligible hysteresis. This further improves device stability producing a cell that maintained 96% of its initial efficiency after 2400 h storage in ambient environment (with controlled relative humidity (RH) <30%) without any encapsulation.
Acetic acid (Ac) is used as an antisolvent for preparing perovskite films with excellent optoelectronic properties. Ac is found to not only reduce perovskite film roughness and residual PbI2 but also generate a passivation effect from the electron‐rich carbonyl group. The best 0.159 cm2 devices produce efficiencies of 22.0% for Cs0.05FA0.80MA0.15Pb(I0.85Br0.15)3 and 23.0% for Cs0.05FA0.90MA0.05Pb(I0.95Br0.05)3.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.201903368</identifier><identifier>PMID: 32154088</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Acids ; Communication ; Communications ; crystal engineering ; Crystallization ; Defects ; Efficiency ; Grain boundaries ; Grain size ; Morphology ; perovskites ; photovoltaic ; Photovoltaic cells ; Quality ; Quantum dots ; Scanning electron microscopy ; stability</subject><ispartof>Advanced science, 2020-03, Vol.7 (5), p.1903368-n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5952-353e6ce896b5308ec246450ead773182a9b6ada8c2cf8fb0bac21473de90c78c3</citedby><cites>FETCH-LOGICAL-c5952-353e6ce896b5308ec246450ead773182a9b6ada8c2cf8fb0bac21473de90c78c3</cites><orcidid>0000-0001-9849-4755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055551/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055551/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,2103,11564,27926,27927,45576,45577,46054,46478,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32154088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Shi, Junwei</creatorcontrib><creatorcontrib>Zheng, Jianghui</creatorcontrib><creatorcontrib>Bing, Jueming</creatorcontrib><creatorcontrib>Yuan, Jianyu</creatorcontrib><creatorcontrib>Cho, Yongyoon</creatorcontrib><creatorcontrib>Tang, Shi</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Yao, Yin</creatorcontrib><creatorcontrib>Lau, Cho Fai Jonathan</creatorcontrib><creatorcontrib>Lee, Da Seul</creatorcontrib><creatorcontrib>Liao, Chwenhaw</creatorcontrib><creatorcontrib>Green, Martin A.</creatorcontrib><creatorcontrib>Huang, Shujuan</creatorcontrib><creatorcontrib>Ma, Wanli</creatorcontrib><creatorcontrib>Ho‐Baillie, Anita W. Y.</creatorcontrib><title>Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Improving the quality of perovskite poly‐crystalline film is essential for the performance of associated solar cells approaching their theoretical limit efficiency. Pinholes, unwanted defects, and nonperovskite phase can be easily generated during film formation, hampering device performance and stability. Here, a simple method is introduced to prepare perovskite film with excellent optoelectronic property by using acetic acid (Ac) as an antisolvent to control perovskite crystallization. Results from a variety of characterizations suggest that the small amount of Ac not only reduces the perovskite film roughness and residual PbI2 but also generates a passivation effect from the electron‐rich carbonyl group (CO) in Ac. The best devices produce a PCE of 22.0% for Cs0.05FA0.80MA0.15Pb(I0.85Br0.15)3 and 23.0% for Cs0.05FA0.90MA0.05Pb(I0.95Br0.05)3 on 0.159 cm2 with negligible hysteresis. This further improves device stability producing a cell that maintained 96% of its initial efficiency after 2400 h storage in ambient environment (with controlled relative humidity (RH) <30%) without any encapsulation.
Acetic acid (Ac) is used as an antisolvent for preparing perovskite films with excellent optoelectronic properties. Ac is found to not only reduce perovskite film roughness and residual PbI2 but also generate a passivation effect from the electron‐rich carbonyl group. The best 0.159 cm2 devices produce efficiencies of 22.0% for Cs0.05FA0.80MA0.15Pb(I0.85Br0.15)3 and 23.0% for Cs0.05FA0.90MA0.05Pb(I0.95Br0.05)3.</description><subject>Acids</subject><subject>Communication</subject><subject>Communications</subject><subject>crystal engineering</subject><subject>Crystallization</subject><subject>Defects</subject><subject>Efficiency</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Morphology</subject><subject>perovskites</subject><subject>photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Quality</subject><subject>Quantum dots</subject><subject>Scanning electron microscopy</subject><subject>stability</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1uEzEURi0EolXoliWyxIZNgv9mxrNBGoXSVooEUgpby2PfSR2ccbEnQcOqj8Az8iQ4pEQtG7yxZR8f-V5_CL2kZEYJYW-13aUZI7QmnJfyCTpltJZTLoV4-mB9gs5SWhNCaMErQeVzdMIZLQSR8hT1jYHBGdwYZ3GTkksDWDyPYxq09-6HHlzo8XKIeoDViLsQ8aVb3eDzrnPGQW9GrHuLF6Ff_br7eQ1xk2HdesCfIIZd-uoGwMvgdcRz8P4FetZpn-Dsfp6gzx_Or-eX08XHi6t5s5iaoi7YlBccSgOyLtuCEwmGiVIUBLStKk4l03VbaqulYaaTXUtabRgVFbdQE1NJwyfo6uC1Qa_VbXQbHUcVtFN_NkJcKR1z3R5UNhtjJeG2ZaLltaxr0lmgrO2k5Bqy693BdbttN2AN9Lkb_pH08UnvbtQq7FRFijxoFry5F8TwbQtpUBuXTO6G7iFsk2K8KmRZkvyNE_T6H3QdtrHPrdpTRFRSyD01O1AmhpQidMfHUKL2yVD7ZKhjMvKFVw9LOOJ_c5ABcQC-Ow_jf3Sqef9lmS8y_htGaMYq</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Li, Yong</creator><creator>Shi, Junwei</creator><creator>Zheng, Jianghui</creator><creator>Bing, Jueming</creator><creator>Yuan, Jianyu</creator><creator>Cho, Yongyoon</creator><creator>Tang, Shi</creator><creator>Zhang, Meng</creator><creator>Yao, Yin</creator><creator>Lau, Cho Fai Jonathan</creator><creator>Lee, Da Seul</creator><creator>Liao, Chwenhaw</creator><creator>Green, Martin A.</creator><creator>Huang, Shujuan</creator><creator>Ma, Wanli</creator><creator>Ho‐Baillie, Anita W. Y.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9849-4755</orcidid></search><sort><creationdate>20200301</creationdate><title>Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell</title><author>Li, Yong ; Shi, Junwei ; Zheng, Jianghui ; Bing, Jueming ; Yuan, Jianyu ; Cho, Yongyoon ; Tang, Shi ; Zhang, Meng ; Yao, Yin ; Lau, Cho Fai Jonathan ; Lee, Da Seul ; Liao, Chwenhaw ; Green, Martin A. ; Huang, Shujuan ; Ma, Wanli ; Ho‐Baillie, Anita W. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5952-353e6ce896b5308ec246450ead773182a9b6ada8c2cf8fb0bac21473de90c78c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Communication</topic><topic>Communications</topic><topic>crystal engineering</topic><topic>Crystallization</topic><topic>Defects</topic><topic>Efficiency</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Morphology</topic><topic>perovskites</topic><topic>photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Quality</topic><topic>Quantum dots</topic><topic>Scanning electron microscopy</topic><topic>stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Shi, Junwei</creatorcontrib><creatorcontrib>Zheng, Jianghui</creatorcontrib><creatorcontrib>Bing, Jueming</creatorcontrib><creatorcontrib>Yuan, Jianyu</creatorcontrib><creatorcontrib>Cho, Yongyoon</creatorcontrib><creatorcontrib>Tang, Shi</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Yao, Yin</creatorcontrib><creatorcontrib>Lau, Cho Fai Jonathan</creatorcontrib><creatorcontrib>Lee, Da Seul</creatorcontrib><creatorcontrib>Liao, Chwenhaw</creatorcontrib><creatorcontrib>Green, Martin A.</creatorcontrib><creatorcontrib>Huang, Shujuan</creatorcontrib><creatorcontrib>Ma, Wanli</creatorcontrib><creatorcontrib>Ho‐Baillie, Anita W. Y.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yong</au><au>Shi, Junwei</au><au>Zheng, Jianghui</au><au>Bing, Jueming</au><au>Yuan, Jianyu</au><au>Cho, Yongyoon</au><au>Tang, Shi</au><au>Zhang, Meng</au><au>Yao, Yin</au><au>Lau, Cho Fai Jonathan</au><au>Lee, Da Seul</au><au>Liao, Chwenhaw</au><au>Green, Martin A.</au><au>Huang, Shujuan</au><au>Ma, Wanli</au><au>Ho‐Baillie, Anita W. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>7</volume><issue>5</issue><spage>1903368</spage><epage>n/a</epage><pages>1903368-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Improving the quality of perovskite poly‐crystalline film is essential for the performance of associated solar cells approaching their theoretical limit efficiency. Pinholes, unwanted defects, and nonperovskite phase can be easily generated during film formation, hampering device performance and stability. Here, a simple method is introduced to prepare perovskite film with excellent optoelectronic property by using acetic acid (Ac) as an antisolvent to control perovskite crystallization. Results from a variety of characterizations suggest that the small amount of Ac not only reduces the perovskite film roughness and residual PbI2 but also generates a passivation effect from the electron‐rich carbonyl group (CO) in Ac. The best devices produce a PCE of 22.0% for Cs0.05FA0.80MA0.15Pb(I0.85Br0.15)3 and 23.0% for Cs0.05FA0.90MA0.05Pb(I0.95Br0.05)3 on 0.159 cm2 with negligible hysteresis. This further improves device stability producing a cell that maintained 96% of its initial efficiency after 2400 h storage in ambient environment (with controlled relative humidity (RH) <30%) without any encapsulation.
Acetic acid (Ac) is used as an antisolvent for preparing perovskite films with excellent optoelectronic properties. Ac is found to not only reduce perovskite film roughness and residual PbI2 but also generate a passivation effect from the electron‐rich carbonyl group. The best 0.159 cm2 devices produce efficiencies of 22.0% for Cs0.05FA0.80MA0.15Pb(I0.85Br0.15)3 and 23.0% for Cs0.05FA0.90MA0.05Pb(I0.95Br0.05)3.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>32154088</pmid><doi>10.1002/advs.201903368</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9849-4755</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2020-03, Vol.7 (5), p.1903368-n/a |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_proquest_miscellaneous_2375866090 |
source | Wiley-Blackwell Journals; Open Access: PubMed Central; Wiley-Blackwell Open Access Titles(OpenAccess); DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Acids Communication Communications crystal engineering Crystallization Defects Efficiency Grain boundaries Grain size Morphology perovskites photovoltaic Photovoltaic cells Quality Quantum dots Scanning electron microscopy stability |
title | Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetic%20Acid%20Assisted%20Crystallization%20Strategy%20for%20High%20Efficiency%20and%20Long%E2%80%90Term%20Stable%20Perovskite%20Solar%20Cell&rft.jtitle=Advanced%20science&rft.au=Li,%20Yong&rft.date=2020-03-01&rft.volume=7&rft.issue=5&rft.spage=1903368&rft.epage=n/a&rft.pages=1903368-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.201903368&rft_dat=%3Cproquest_doaj_%3E2375866090%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2370478480&rft_id=info:pmid/32154088&rft_doaj_id=oai_doaj_org_article_464ccd803db24b398990fde12bf883ae&rfr_iscdi=true |