Oncolytic HSV-Infected Glioma Cells Activate NOTCH in Adjacent Tumor Cells Sensitizing Tumors to Gamma Secretase Inhibition
Purpose: To examine the effect of oncolytic herpes simplex virus (oHSV) on NOTCH signaling in central nervous system tumors. Experimental Design: Bioluminescence imaging, reverse phase protein array proteomics, fluorescence microscopy, reporter assays, and molecular biology approaches were used to e...
Gespeichert in:
Veröffentlicht in: | Clinical cancer research 2020-05, Vol.26 (10), p.2381-2392 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose: To examine the effect of oncolytic herpes simplex virus (oHSV) on NOTCH signaling in central nervous system tumors.
Experimental Design: Bioluminescence imaging, reverse phase protein array proteomics, fluorescence microscopy, reporter assays, and molecular biology approaches were used to evaluate NOTCH signaling. Orthotopic glioma-mouse models were utilized to evaluate effects in vivo.
Results: We have identified that herpes simplex virus-1 (HSV-1; oncolytic and wild-type)-infected glioma cells induce NOTCH signaling, from inside of infected cells into adjacent tumor cells (inside out signaling). This was canonical NOTCH signaling, which resulted in activation of RBPJ-dependent transcriptional activity that could be rescued with dnMAML. High-throughput screening of HSV-1-encoded cDNA and miRNA libraries further uncovered that HSV-1 miR-H16 induced NOTCH signaling. We further identified that factor inhibiting HIF-1 (FIH-1) is a direct target of miR-H16, and that FIH-1 downregulation by virus encoded miR-H16 induces NOTCH activity. FIH-1 binding to Mib1 has been reported, but this is the first report that shows FIH-1 sequester Mib1 to suppress NOTCH activation. We observed that FIH-1 degradation induced NOTCH ligand ubiquitination and NOTCH activity. REMBRANDT and The Cancer Genome Atlas data analysis also uncovered a significant negative regulation between FIH-1 and NOTCH. Furthermore, combination of oHSV with NOTCH-blocking gamma secretase inhibitor (GSI) had a therapeutic advantage in two different intracranial glioma models treated with oncolytic HSV, without affecting safety profile of the virus in vivo.
Conclusions: To our knowledge this is the first report to identify impact of HSV-1 on NOTCH signaling and highlights the significance of combining oHSV and GSI for glioblastoma therapy. |
---|---|
ISSN: | 1078-0432 1557-3265 |
DOI: | 10.1158/1078-0432.CCR-19-3420 |