Hierarchical Mechanisms of Lateral Interactions in High-Performance Fibers

The processing conditions used in the production of advanced polymer fibers facilitate the formation of an oriented fibrillar network that consists of structures spanning multiple length scales. The irregular nature of fiber tensile fracture surfaces suggests that their structural integrity is defin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-05, Vol.12 (19), p.22256-22267
Hauptverfasser: Stockdale, Taylor A, Cole, Daniel P, Staniszewski, Jeffrey M, Roenbeck, Michael R, Papkov, Dimitry, Lustig, Steve R, Dzenis, Yuris A, Strawhecker, Kenneth E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22267
container_issue 19
container_start_page 22256
container_title ACS applied materials & interfaces
container_volume 12
creator Stockdale, Taylor A
Cole, Daniel P
Staniszewski, Jeffrey M
Roenbeck, Michael R
Papkov, Dimitry
Lustig, Steve R
Dzenis, Yuris A
Strawhecker, Kenneth E
description The processing conditions used in the production of advanced polymer fibers facilitate the formation of an oriented fibrillar network that consists of structures spanning multiple length scales. The irregular nature of fiber tensile fracture surfaces suggests that their structural integrity is defined by the degree of lateral (interfacial) interactions that exist within the fiber microstructure. To date, experimental studies have quantified interfacial adhesion between nanoscale fibrils measuring 10–50 nm in width, and the global fracture energy through applying peel loads to fiber halves. However, a more in-depth evaluation of tensile fracture indicates that fiber failure typically occurs at an intermediate length scale, involving fibrillation along interfaces between fibril bundles of a few 100s of nanometers in width. Interaction mechanisms at this length scale have not yet been studied, due in part to a lack of established experimental techniques. Here, a new focused ion beam-based sample preparation protocol is combined with nanoindentation to probe interfaces at the intermediate length scale in two high-performance fibers, a rigid-rod poly­(p-phenylene terephthalamide) and a flexible chain ultrahigh molecular weight polyethylene fiber. Higher interfacial separation energy recorded in the rigid-rod fiber correlated with less intensive fibrillation during failure and is discussed in the context of fiber chemistry and processing. Power law scaling of the total absorbed interfacial separation energy at three different scales in the polyethylene fiber is observed and analyzed, and distinct energy absorption mechanisms, featuring a degree of self-similarity, are identified. The contribution of these mechanisms to the overall integrity of the fiber is discussed, and the importance of the intermediate scale is elucidated. Results from this study provide new insights into the mechanical implications of hierarchical lateral interactions and will aid in the development of novel fibers with further improved mechanical performance.
doi_str_mv 10.1021/acsami.9b23459
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2374315028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374315028</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-dbcd16c97ea34bf8bea7d785aed547b222735dfda5d6cc4998dcfb4f3e9724ae3</originalsourceid><addsrcrecordid>eNp1kDtLA0EURgdRTIy2lrKlCBvnmdktJRijRLTQepjHHTNhH3Fmt_DfuyExndW9cM_3wT0IXRM8JZiSe22TrsO0NJRxUZ6gMSk5zwsq6Olx53yELlLaYDxjFItzNGKUcEp5OUYvywBRR7sOVlfZK9i1bkKqU9b6bKW74VZlz81u2i60TcpCky3D1zp_h-jbWOvGQrYIBmK6RGdeVwmuDnOCPhePH_Nlvnp7ep4_rHLNJO5yZ6wjM1tK0IwbXxjQ0slCaHCCS0MplUw477RwM2t5WRbOesM9g1JSroFN0O2-dxvb7x5Sp-qQLFSVbqDtk6JMckYEpsWATveojW1KEbzaxlDr-KMIVjt_au9PHfwNgZtDd29qcEf8T9gA3O2BIag2bR-b4dX_2n4BQ-F7yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374315028</pqid></control><display><type>article</type><title>Hierarchical Mechanisms of Lateral Interactions in High-Performance Fibers</title><source>ACS Publications</source><creator>Stockdale, Taylor A ; Cole, Daniel P ; Staniszewski, Jeffrey M ; Roenbeck, Michael R ; Papkov, Dimitry ; Lustig, Steve R ; Dzenis, Yuris A ; Strawhecker, Kenneth E</creator><creatorcontrib>Stockdale, Taylor A ; Cole, Daniel P ; Staniszewski, Jeffrey M ; Roenbeck, Michael R ; Papkov, Dimitry ; Lustig, Steve R ; Dzenis, Yuris A ; Strawhecker, Kenneth E</creatorcontrib><description>The processing conditions used in the production of advanced polymer fibers facilitate the formation of an oriented fibrillar network that consists of structures spanning multiple length scales. The irregular nature of fiber tensile fracture surfaces suggests that their structural integrity is defined by the degree of lateral (interfacial) interactions that exist within the fiber microstructure. To date, experimental studies have quantified interfacial adhesion between nanoscale fibrils measuring 10–50 nm in width, and the global fracture energy through applying peel loads to fiber halves. However, a more in-depth evaluation of tensile fracture indicates that fiber failure typically occurs at an intermediate length scale, involving fibrillation along interfaces between fibril bundles of a few 100s of nanometers in width. Interaction mechanisms at this length scale have not yet been studied, due in part to a lack of established experimental techniques. Here, a new focused ion beam-based sample preparation protocol is combined with nanoindentation to probe interfaces at the intermediate length scale in two high-performance fibers, a rigid-rod poly­(p-phenylene terephthalamide) and a flexible chain ultrahigh molecular weight polyethylene fiber. Higher interfacial separation energy recorded in the rigid-rod fiber correlated with less intensive fibrillation during failure and is discussed in the context of fiber chemistry and processing. Power law scaling of the total absorbed interfacial separation energy at three different scales in the polyethylene fiber is observed and analyzed, and distinct energy absorption mechanisms, featuring a degree of self-similarity, are identified. The contribution of these mechanisms to the overall integrity of the fiber is discussed, and the importance of the intermediate scale is elucidated. Results from this study provide new insights into the mechanical implications of hierarchical lateral interactions and will aid in the development of novel fibers with further improved mechanical performance.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b23459</identifier><identifier>PMID: 32142249</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-05, Vol.12 (19), p.22256-22267</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-dbcd16c97ea34bf8bea7d785aed547b222735dfda5d6cc4998dcfb4f3e9724ae3</citedby><cites>FETCH-LOGICAL-a370t-dbcd16c97ea34bf8bea7d785aed547b222735dfda5d6cc4998dcfb4f3e9724ae3</cites><orcidid>0000-0002-2469-3257 ; 0000-0001-5030-852X ; 0000-0002-6645-3294 ; 0000-0002-7509-8466 ; 0000-0003-3446-6653 ; 0000-0002-8160-6156 ; 0000-0002-1792-7350 ; 0000-0002-3462-4757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b23459$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b23459$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32142249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stockdale, Taylor A</creatorcontrib><creatorcontrib>Cole, Daniel P</creatorcontrib><creatorcontrib>Staniszewski, Jeffrey M</creatorcontrib><creatorcontrib>Roenbeck, Michael R</creatorcontrib><creatorcontrib>Papkov, Dimitry</creatorcontrib><creatorcontrib>Lustig, Steve R</creatorcontrib><creatorcontrib>Dzenis, Yuris A</creatorcontrib><creatorcontrib>Strawhecker, Kenneth E</creatorcontrib><title>Hierarchical Mechanisms of Lateral Interactions in High-Performance Fibers</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The processing conditions used in the production of advanced polymer fibers facilitate the formation of an oriented fibrillar network that consists of structures spanning multiple length scales. The irregular nature of fiber tensile fracture surfaces suggests that their structural integrity is defined by the degree of lateral (interfacial) interactions that exist within the fiber microstructure. To date, experimental studies have quantified interfacial adhesion between nanoscale fibrils measuring 10–50 nm in width, and the global fracture energy through applying peel loads to fiber halves. However, a more in-depth evaluation of tensile fracture indicates that fiber failure typically occurs at an intermediate length scale, involving fibrillation along interfaces between fibril bundles of a few 100s of nanometers in width. Interaction mechanisms at this length scale have not yet been studied, due in part to a lack of established experimental techniques. Here, a new focused ion beam-based sample preparation protocol is combined with nanoindentation to probe interfaces at the intermediate length scale in two high-performance fibers, a rigid-rod poly­(p-phenylene terephthalamide) and a flexible chain ultrahigh molecular weight polyethylene fiber. Higher interfacial separation energy recorded in the rigid-rod fiber correlated with less intensive fibrillation during failure and is discussed in the context of fiber chemistry and processing. Power law scaling of the total absorbed interfacial separation energy at three different scales in the polyethylene fiber is observed and analyzed, and distinct energy absorption mechanisms, featuring a degree of self-similarity, are identified. The contribution of these mechanisms to the overall integrity of the fiber is discussed, and the importance of the intermediate scale is elucidated. Results from this study provide new insights into the mechanical implications of hierarchical lateral interactions and will aid in the development of novel fibers with further improved mechanical performance.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDtLA0EURgdRTIy2lrKlCBvnmdktJRijRLTQepjHHTNhH3Fmt_DfuyExndW9cM_3wT0IXRM8JZiSe22TrsO0NJRxUZ6gMSk5zwsq6Olx53yELlLaYDxjFItzNGKUcEp5OUYvywBRR7sOVlfZK9i1bkKqU9b6bKW74VZlz81u2i60TcpCky3D1zp_h-jbWOvGQrYIBmK6RGdeVwmuDnOCPhePH_Nlvnp7ep4_rHLNJO5yZ6wjM1tK0IwbXxjQ0slCaHCCS0MplUw477RwM2t5WRbOesM9g1JSroFN0O2-dxvb7x5Sp-qQLFSVbqDtk6JMckYEpsWATveojW1KEbzaxlDr-KMIVjt_au9PHfwNgZtDd29qcEf8T9gA3O2BIag2bR-b4dX_2n4BQ-F7yg</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Stockdale, Taylor A</creator><creator>Cole, Daniel P</creator><creator>Staniszewski, Jeffrey M</creator><creator>Roenbeck, Michael R</creator><creator>Papkov, Dimitry</creator><creator>Lustig, Steve R</creator><creator>Dzenis, Yuris A</creator><creator>Strawhecker, Kenneth E</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2469-3257</orcidid><orcidid>https://orcid.org/0000-0001-5030-852X</orcidid><orcidid>https://orcid.org/0000-0002-6645-3294</orcidid><orcidid>https://orcid.org/0000-0002-7509-8466</orcidid><orcidid>https://orcid.org/0000-0003-3446-6653</orcidid><orcidid>https://orcid.org/0000-0002-8160-6156</orcidid><orcidid>https://orcid.org/0000-0002-1792-7350</orcidid><orcidid>https://orcid.org/0000-0002-3462-4757</orcidid></search><sort><creationdate>20200513</creationdate><title>Hierarchical Mechanisms of Lateral Interactions in High-Performance Fibers</title><author>Stockdale, Taylor A ; Cole, Daniel P ; Staniszewski, Jeffrey M ; Roenbeck, Michael R ; Papkov, Dimitry ; Lustig, Steve R ; Dzenis, Yuris A ; Strawhecker, Kenneth E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-dbcd16c97ea34bf8bea7d785aed547b222735dfda5d6cc4998dcfb4f3e9724ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockdale, Taylor A</creatorcontrib><creatorcontrib>Cole, Daniel P</creatorcontrib><creatorcontrib>Staniszewski, Jeffrey M</creatorcontrib><creatorcontrib>Roenbeck, Michael R</creatorcontrib><creatorcontrib>Papkov, Dimitry</creatorcontrib><creatorcontrib>Lustig, Steve R</creatorcontrib><creatorcontrib>Dzenis, Yuris A</creatorcontrib><creatorcontrib>Strawhecker, Kenneth E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stockdale, Taylor A</au><au>Cole, Daniel P</au><au>Staniszewski, Jeffrey M</au><au>Roenbeck, Michael R</au><au>Papkov, Dimitry</au><au>Lustig, Steve R</au><au>Dzenis, Yuris A</au><au>Strawhecker, Kenneth E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Mechanisms of Lateral Interactions in High-Performance Fibers</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>12</volume><issue>19</issue><spage>22256</spage><epage>22267</epage><pages>22256-22267</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The processing conditions used in the production of advanced polymer fibers facilitate the formation of an oriented fibrillar network that consists of structures spanning multiple length scales. The irregular nature of fiber tensile fracture surfaces suggests that their structural integrity is defined by the degree of lateral (interfacial) interactions that exist within the fiber microstructure. To date, experimental studies have quantified interfacial adhesion between nanoscale fibrils measuring 10–50 nm in width, and the global fracture energy through applying peel loads to fiber halves. However, a more in-depth evaluation of tensile fracture indicates that fiber failure typically occurs at an intermediate length scale, involving fibrillation along interfaces between fibril bundles of a few 100s of nanometers in width. Interaction mechanisms at this length scale have not yet been studied, due in part to a lack of established experimental techniques. Here, a new focused ion beam-based sample preparation protocol is combined with nanoindentation to probe interfaces at the intermediate length scale in two high-performance fibers, a rigid-rod poly­(p-phenylene terephthalamide) and a flexible chain ultrahigh molecular weight polyethylene fiber. Higher interfacial separation energy recorded in the rigid-rod fiber correlated with less intensive fibrillation during failure and is discussed in the context of fiber chemistry and processing. Power law scaling of the total absorbed interfacial separation energy at three different scales in the polyethylene fiber is observed and analyzed, and distinct energy absorption mechanisms, featuring a degree of self-similarity, are identified. The contribution of these mechanisms to the overall integrity of the fiber is discussed, and the importance of the intermediate scale is elucidated. Results from this study provide new insights into the mechanical implications of hierarchical lateral interactions and will aid in the development of novel fibers with further improved mechanical performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32142249</pmid><doi>10.1021/acsami.9b23459</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2469-3257</orcidid><orcidid>https://orcid.org/0000-0001-5030-852X</orcidid><orcidid>https://orcid.org/0000-0002-6645-3294</orcidid><orcidid>https://orcid.org/0000-0002-7509-8466</orcidid><orcidid>https://orcid.org/0000-0003-3446-6653</orcidid><orcidid>https://orcid.org/0000-0002-8160-6156</orcidid><orcidid>https://orcid.org/0000-0002-1792-7350</orcidid><orcidid>https://orcid.org/0000-0002-3462-4757</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-05, Vol.12 (19), p.22256-22267
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2374315028
source ACS Publications
title Hierarchical Mechanisms of Lateral Interactions in High-Performance Fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Mechanisms%20of%20Lateral%20Interactions%20in%20High-Performance%20Fibers&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Stockdale,%20Taylor%20A&rft.date=2020-05-13&rft.volume=12&rft.issue=19&rft.spage=22256&rft.epage=22267&rft.pages=22256-22267&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b23459&rft_dat=%3Cproquest_cross%3E2374315028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374315028&rft_id=info:pmid/32142249&rfr_iscdi=true