GP-CNN-DTEL: Global-Part CNN Model With Data-Transformed Ensemble Learning for Skin Lesion Classification

Precise skin lesion classification is still challenging due to two problems, i.e., (1) inter-class similarity and intra-class variation of skin lesion images, and (2) the weak generalization ability of single Deep Convolutional Neural Network trained with limited data. Therefore, we propose a Global...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2020-10, Vol.24 (10), p.2870-2882
Hauptverfasser: Tang, Peng, Liang, Qiaokang, Yan, Xintong, Xiang, Shao, Zhang, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2882
container_issue 10
container_start_page 2870
container_title IEEE journal of biomedical and health informatics
container_volume 24
creator Tang, Peng
Liang, Qiaokang
Yan, Xintong
Xiang, Shao
Zhang, Dan
description Precise skin lesion classification is still challenging due to two problems, i.e., (1) inter-class similarity and intra-class variation of skin lesion images, and (2) the weak generalization ability of single Deep Convolutional Neural Network trained with limited data. Therefore, we propose a Global-Part Convolutional Neural Network (GP-CNN) model, which treats the fine-grained local information and global context information with equal importance. The Global-Part model consists of a Global Convolutional Neural Network (G-CNN) and a Part Convolutional Neural Network (P-CNN). Specifically, the G-CNN is trained with downscaled dermoscopy images, and is used to extract the global-scale information of dermoscopy images and produce the Classification Activation Map (CAM). While the P-CNN is trained with the CAM guided cropped image patches and is used to capture local-scale information of skin lesion regions. Additionally, we present a data-transformed ensemble learning strategy, which can further boost the classification performance by integrating the different discriminant information from GP-CNNs that are trained with original images, color constancy transformed images, and feature saliency transformed images, respectively. The proposed method is evaluated on the ISIC 2016 and ISIC 2017 Skin Lesion Challenge (SLC) classification datasets. Experimental results indicate that the proposed method can achieve the state-of-the-art skin lesion classification performance (i.e., an AP value of 0.718 on the ISIC 2016 SLC dataset and an Average Auc value of 0.926 on the ISIC 2017 SLC dataset) without any external data, compared with other current methods which need to use external data.
doi_str_mv 10.1109/JBHI.2020.2977013
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2374308047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9018274</ieee_id><sourcerecordid>2449309483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-997f3383ba8e6f02f071ebad0b2722dfa6db09f5a38cb015ee6e503b2697c51a3</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhq2KChDND0BIyBKXXjYdf2TX7q0NaQClAYlUHC17dwyGzS61N4f--zpK4MBcPH7nmdFoXkJOGYwZA_3t5ufV9ZgDhzHXVQVMfCLHnJWq4BzUwVvOtDwio5SeIYfKki4PyZHgTHJZwjEJ87tiulwWl6vZ4judt72zbXFn40CzSn_3Dbb0IQxP9NIOtlhF2yXfxzU2dNYlXLsW6QJt7EL3SHOB3r-ELisp9B2dtjal4ENth_z9Qj572yYc7d8T8ufXbDW9Kha38-vpj0VRC6mHQuvKC6GEswpLD9xDxdDZBhyvOG-8LRsH2k-sULUDNkEscQLC8VJX9YRZcUK-7ua-xv7vBtNg1iHV2La2w36TDBeVFKBAVhm9-IA-95vY5e0Ml1IL0FKJTLEdVcc-pYjevMawtvGfYWC2VpitFWZrhdlbkXvO95M3Lh_rvePt8Bk42wEBEd_LGpjieb3_nBGKKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449309483</pqid></control><display><type>article</type><title>GP-CNN-DTEL: Global-Part CNN Model With Data-Transformed Ensemble Learning for Skin Lesion Classification</title><source>IEEE Xplore</source><creator>Tang, Peng ; Liang, Qiaokang ; Yan, Xintong ; Xiang, Shao ; Zhang, Dan</creator><creatorcontrib>Tang, Peng ; Liang, Qiaokang ; Yan, Xintong ; Xiang, Shao ; Zhang, Dan</creatorcontrib><description>Precise skin lesion classification is still challenging due to two problems, i.e., (1) inter-class similarity and intra-class variation of skin lesion images, and (2) the weak generalization ability of single Deep Convolutional Neural Network trained with limited data. Therefore, we propose a Global-Part Convolutional Neural Network (GP-CNN) model, which treats the fine-grained local information and global context information with equal importance. The Global-Part model consists of a Global Convolutional Neural Network (G-CNN) and a Part Convolutional Neural Network (P-CNN). Specifically, the G-CNN is trained with downscaled dermoscopy images, and is used to extract the global-scale information of dermoscopy images and produce the Classification Activation Map (CAM). While the P-CNN is trained with the CAM guided cropped image patches and is used to capture local-scale information of skin lesion regions. Additionally, we present a data-transformed ensemble learning strategy, which can further boost the classification performance by integrating the different discriminant information from GP-CNNs that are trained with original images, color constancy transformed images, and feature saliency transformed images, respectively. The proposed method is evaluated on the ISIC 2016 and ISIC 2017 Skin Lesion Challenge (SLC) classification datasets. Experimental results indicate that the proposed method can achieve the state-of-the-art skin lesion classification performance (i.e., an AP value of 0.718 on the ISIC 2016 SLC dataset and an Average Auc value of 0.926 on the ISIC 2017 SLC dataset) without any external data, compared with other current methods which need to use external data.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2020.2977013</identifier><identifier>PMID: 32142460</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Classification ; color constancy guided ensemble learning ; Convolutional neural networks ; Data mining ; Datasets ; Deep Learning ; Dermoscopy - methods ; dermoscopy images ; Ensemble learning ; global-part model ; Humans ; Image classification ; Image color analysis ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information processing ; Lesions ; Melanoma ; Microscopy ; Neural networks ; Neural Networks, Computer ; Skin ; Skin diseases ; Skin Diseases - diagnostic imaging ; Skin lesion classification ; Skin lesions ; Training</subject><ispartof>IEEE journal of biomedical and health informatics, 2020-10, Vol.24 (10), p.2870-2882</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-997f3383ba8e6f02f071ebad0b2722dfa6db09f5a38cb015ee6e503b2697c51a3</citedby><cites>FETCH-LOGICAL-c349t-997f3383ba8e6f02f071ebad0b2722dfa6db09f5a38cb015ee6e503b2697c51a3</cites><orcidid>0000-0002-2797-1937 ; 0000-0002-5504-9966 ; 0000-0003-4099-6677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9018274$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9018274$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32142460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Peng</creatorcontrib><creatorcontrib>Liang, Qiaokang</creatorcontrib><creatorcontrib>Yan, Xintong</creatorcontrib><creatorcontrib>Xiang, Shao</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><title>GP-CNN-DTEL: Global-Part CNN Model With Data-Transformed Ensemble Learning for Skin Lesion Classification</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Precise skin lesion classification is still challenging due to two problems, i.e., (1) inter-class similarity and intra-class variation of skin lesion images, and (2) the weak generalization ability of single Deep Convolutional Neural Network trained with limited data. Therefore, we propose a Global-Part Convolutional Neural Network (GP-CNN) model, which treats the fine-grained local information and global context information with equal importance. The Global-Part model consists of a Global Convolutional Neural Network (G-CNN) and a Part Convolutional Neural Network (P-CNN). Specifically, the G-CNN is trained with downscaled dermoscopy images, and is used to extract the global-scale information of dermoscopy images and produce the Classification Activation Map (CAM). While the P-CNN is trained with the CAM guided cropped image patches and is used to capture local-scale information of skin lesion regions. Additionally, we present a data-transformed ensemble learning strategy, which can further boost the classification performance by integrating the different discriminant information from GP-CNNs that are trained with original images, color constancy transformed images, and feature saliency transformed images, respectively. The proposed method is evaluated on the ISIC 2016 and ISIC 2017 Skin Lesion Challenge (SLC) classification datasets. Experimental results indicate that the proposed method can achieve the state-of-the-art skin lesion classification performance (i.e., an AP value of 0.718 on the ISIC 2016 SLC dataset and an Average Auc value of 0.926 on the ISIC 2017 SLC dataset) without any external data, compared with other current methods which need to use external data.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>color constancy guided ensemble learning</subject><subject>Convolutional neural networks</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Dermoscopy - methods</subject><subject>dermoscopy images</subject><subject>Ensemble learning</subject><subject>global-part model</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image color analysis</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information processing</subject><subject>Lesions</subject><subject>Melanoma</subject><subject>Microscopy</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Skin</subject><subject>Skin diseases</subject><subject>Skin Diseases - diagnostic imaging</subject><subject>Skin lesion classification</subject><subject>Skin lesions</subject><subject>Training</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1PGzEQhq2KChDND0BIyBKXXjYdf2TX7q0NaQClAYlUHC17dwyGzS61N4f--zpK4MBcPH7nmdFoXkJOGYwZA_3t5ufV9ZgDhzHXVQVMfCLHnJWq4BzUwVvOtDwio5SeIYfKki4PyZHgTHJZwjEJ87tiulwWl6vZ4judt72zbXFn40CzSn_3Dbb0IQxP9NIOtlhF2yXfxzU2dNYlXLsW6QJt7EL3SHOB3r-ELisp9B2dtjal4ENth_z9Qj572yYc7d8T8ufXbDW9Kha38-vpj0VRC6mHQuvKC6GEswpLD9xDxdDZBhyvOG-8LRsH2k-sULUDNkEscQLC8VJX9YRZcUK-7ua-xv7vBtNg1iHV2La2w36TDBeVFKBAVhm9-IA-95vY5e0Ml1IL0FKJTLEdVcc-pYjevMawtvGfYWC2VpitFWZrhdlbkXvO95M3Lh_rvePt8Bk42wEBEd_LGpjieb3_nBGKKA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Tang, Peng</creator><creator>Liang, Qiaokang</creator><creator>Yan, Xintong</creator><creator>Xiang, Shao</creator><creator>Zhang, Dan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2797-1937</orcidid><orcidid>https://orcid.org/0000-0002-5504-9966</orcidid><orcidid>https://orcid.org/0000-0003-4099-6677</orcidid></search><sort><creationdate>20201001</creationdate><title>GP-CNN-DTEL: Global-Part CNN Model With Data-Transformed Ensemble Learning for Skin Lesion Classification</title><author>Tang, Peng ; Liang, Qiaokang ; Yan, Xintong ; Xiang, Shao ; Zhang, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-997f3383ba8e6f02f071ebad0b2722dfa6db09f5a38cb015ee6e503b2697c51a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>color constancy guided ensemble learning</topic><topic>Convolutional neural networks</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Dermoscopy - methods</topic><topic>dermoscopy images</topic><topic>Ensemble learning</topic><topic>global-part model</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image color analysis</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information processing</topic><topic>Lesions</topic><topic>Melanoma</topic><topic>Microscopy</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Skin</topic><topic>Skin diseases</topic><topic>Skin Diseases - diagnostic imaging</topic><topic>Skin lesion classification</topic><topic>Skin lesions</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Peng</creatorcontrib><creatorcontrib>Liang, Qiaokang</creatorcontrib><creatorcontrib>Yan, Xintong</creatorcontrib><creatorcontrib>Xiang, Shao</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Peng</au><au>Liang, Qiaokang</au><au>Yan, Xintong</au><au>Xiang, Shao</au><au>Zhang, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GP-CNN-DTEL: Global-Part CNN Model With Data-Transformed Ensemble Learning for Skin Lesion Classification</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>24</volume><issue>10</issue><spage>2870</spage><epage>2882</epage><pages>2870-2882</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Precise skin lesion classification is still challenging due to two problems, i.e., (1) inter-class similarity and intra-class variation of skin lesion images, and (2) the weak generalization ability of single Deep Convolutional Neural Network trained with limited data. Therefore, we propose a Global-Part Convolutional Neural Network (GP-CNN) model, which treats the fine-grained local information and global context information with equal importance. The Global-Part model consists of a Global Convolutional Neural Network (G-CNN) and a Part Convolutional Neural Network (P-CNN). Specifically, the G-CNN is trained with downscaled dermoscopy images, and is used to extract the global-scale information of dermoscopy images and produce the Classification Activation Map (CAM). While the P-CNN is trained with the CAM guided cropped image patches and is used to capture local-scale information of skin lesion regions. Additionally, we present a data-transformed ensemble learning strategy, which can further boost the classification performance by integrating the different discriminant information from GP-CNNs that are trained with original images, color constancy transformed images, and feature saliency transformed images, respectively. The proposed method is evaluated on the ISIC 2016 and ISIC 2017 Skin Lesion Challenge (SLC) classification datasets. Experimental results indicate that the proposed method can achieve the state-of-the-art skin lesion classification performance (i.e., an AP value of 0.718 on the ISIC 2016 SLC dataset and an Average Auc value of 0.926 on the ISIC 2017 SLC dataset) without any external data, compared with other current methods which need to use external data.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32142460</pmid><doi>10.1109/JBHI.2020.2977013</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2797-1937</orcidid><orcidid>https://orcid.org/0000-0002-5504-9966</orcidid><orcidid>https://orcid.org/0000-0003-4099-6677</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2020-10, Vol.24 (10), p.2870-2882
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_miscellaneous_2374308047
source IEEE Xplore
subjects Artificial neural networks
Classification
color constancy guided ensemble learning
Convolutional neural networks
Data mining
Datasets
Deep Learning
Dermoscopy - methods
dermoscopy images
Ensemble learning
global-part model
Humans
Image classification
Image color analysis
Image Interpretation, Computer-Assisted - methods
Image processing
Information processing
Lesions
Melanoma
Microscopy
Neural networks
Neural Networks, Computer
Skin
Skin diseases
Skin Diseases - diagnostic imaging
Skin lesion classification
Skin lesions
Training
title GP-CNN-DTEL: Global-Part CNN Model With Data-Transformed Ensemble Learning for Skin Lesion Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GP-CNN-DTEL:%20Global-Part%20CNN%20Model%20With%20Data-Transformed%20Ensemble%20Learning%20for%20Skin%20Lesion%20Classification&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Tang,%20Peng&rft.date=2020-10-01&rft.volume=24&rft.issue=10&rft.spage=2870&rft.epage=2882&rft.pages=2870-2882&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2020.2977013&rft_dat=%3Cproquest_RIE%3E2449309483%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449309483&rft_id=info:pmid/32142460&rft_ieee_id=9018274&rfr_iscdi=true