Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex
Structural rules underlying functional properties of cortical circuits are poorly understood. To explore these rules systematically, we integrated information from extensive literature curation and large-scale experimental surveys into a data-driven, biologically realistic simulation of the awake mo...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2020-05, Vol.106 (3), p.388-403.e18 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 403.e18 |
---|---|
container_issue | 3 |
container_start_page | 388 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 106 |
creator | Billeh, Yazan N. Cai, Binghuang Gratiy, Sergey L. Dai, Kael Iyer, Ramakrishnan Gouwens, Nathan W. Abbasi-Asl, Reza Jia, Xiaoxuan Siegle, Joshua H. Olsen, Shawn R. Koch, Christof Mihalas, Stefan Arkhipov, Anton |
description | Structural rules underlying functional properties of cortical circuits are poorly understood. To explore these rules systematically, we integrated information from extensive literature curation and large-scale experimental surveys into a data-driven, biologically realistic simulation of the awake mouse primary visual cortex. The model was constructed at two levels of granularity, using either biophysically detailed or point neurons. Both variants have identical network connectivity and were compared to each other and to experimental recordings of visual-driven neural activity. While tuning these networks to recapitulate experimental data, we identified rules governing cell-class-specific connectivity and synaptic strengths. These structural constraints constitute hypotheses that can be tested experimentally. Despite their distinct single-cell abstraction, both spatially extended and point models perform similarly at the level of firing rate distributions for the questions we investigated. All data and models are freely available as a resource for the community.
[Display omitted]
•Two network models of the mouse primary visual cortex are developed and released•One uses compartmental-neuron models and the other point-neuron models•The models recapitulate observations from in vivo experimental data•Simulations identify experimentally testable predictions about cortex circuitry
Billeh et al. systematically integrate multi-modal data about neuron types, connectivity, and sensory innervations to create biologically realistic models of the mouse primary visual cortex at two levels of resolution, shared freely as a community resource. |
doi_str_mv | 10.1016/j.neuron.2020.01.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2374307069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627320300672</els_id><sourcerecordid>2374307069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-6caa066bd44df0d3a3e21afa5e5f1e1a4bdf746ae7131f9dd6c33c590f3eb593</originalsourceid><addsrcrecordid>eNp9kc9rFDEUx4Modlv9D0QCXrzM-DLJZHYugqy2FrootHgN2eRFssxOan6I_e_NMNWDB09JyOf7Xl4-hLxi0DJg8t2xnbHEMLcddNACa0HAE7JhMA6NYOP4lGxgO8pGdgM_I-cpHQGY6Ef2nJzxjolOiu2GhNuHlPGkszf0es74PdZtmGlw9DbHYnKJeqJ6tvSyzGa5qsePOmvq5xzovkzZN8noCek-WJzSktyHkpB-jf6k4wP95lOpoV2IGX-9IM-cnhK-fFwvyN3lp7vd5-bmy9X17sNNYwSXuZFGa5DyYIWwDizXHDumne6xdwyZFgfrBiE1DowzN1orDeemH8FxPPQjvyBv17L3MfwomLI6-WRwmvSM9XGq44PgMIBc0Df_oMdQYh2zUqLrpZRbua2UWCkTQ0oRnbpfx1MM1OJDHdXqQy0-FDBVfdTY68fi5XBC-zf0R0AF3q9A_Tr86TGqZDzOBq2PaLKywf-_w29HAp9h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425666868</pqid></control><display><type>article</type><title>Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex</title><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Billeh, Yazan N. ; Cai, Binghuang ; Gratiy, Sergey L. ; Dai, Kael ; Iyer, Ramakrishnan ; Gouwens, Nathan W. ; Abbasi-Asl, Reza ; Jia, Xiaoxuan ; Siegle, Joshua H. ; Olsen, Shawn R. ; Koch, Christof ; Mihalas, Stefan ; Arkhipov, Anton</creator><creatorcontrib>Billeh, Yazan N. ; Cai, Binghuang ; Gratiy, Sergey L. ; Dai, Kael ; Iyer, Ramakrishnan ; Gouwens, Nathan W. ; Abbasi-Asl, Reza ; Jia, Xiaoxuan ; Siegle, Joshua H. ; Olsen, Shawn R. ; Koch, Christof ; Mihalas, Stefan ; Arkhipov, Anton</creatorcontrib><description>Structural rules underlying functional properties of cortical circuits are poorly understood. To explore these rules systematically, we integrated information from extensive literature curation and large-scale experimental surveys into a data-driven, biologically realistic simulation of the awake mouse primary visual cortex. The model was constructed at two levels of granularity, using either biophysically detailed or point neurons. Both variants have identical network connectivity and were compared to each other and to experimental recordings of visual-driven neural activity. While tuning these networks to recapitulate experimental data, we identified rules governing cell-class-specific connectivity and synaptic strengths. These structural constraints constitute hypotheses that can be tested experimentally. Despite their distinct single-cell abstraction, both spatially extended and point models perform similarly at the level of firing rate distributions for the questions we investigated. All data and models are freely available as a resource for the community.
[Display omitted]
•Two network models of the mouse primary visual cortex are developed and released•One uses compartmental-neuron models and the other point-neuron models•The models recapitulate observations from in vivo experimental data•Simulations identify experimentally testable predictions about cortex circuitry
Billeh et al. systematically integrate multi-modal data about neuron types, connectivity, and sensory innervations to create biologically realistic models of the mouse primary visual cortex at two levels of resolution, shared freely as a community resource.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2020.01.040</identifier><identifier>PMID: 32142648</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animal models ; Firing rate ; Functional morphology ; Information processing ; Neural networks ; Neurons ; Physiology ; Structure-function relationships ; Visual cortex ; Visual pathways</subject><ispartof>Neuron (Cambridge, Mass.), 2020-05, Vol.106 (3), p.388-403.e18</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>2020. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-6caa066bd44df0d3a3e21afa5e5f1e1a4bdf746ae7131f9dd6c33c590f3eb593</citedby><cites>FETCH-LOGICAL-c436t-6caa066bd44df0d3a3e21afa5e5f1e1a4bdf746ae7131f9dd6c33c590f3eb593</cites><orcidid>0000-0001-5200-4992 ; 0000-0003-1106-8310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2020.01.040$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32142648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Billeh, Yazan N.</creatorcontrib><creatorcontrib>Cai, Binghuang</creatorcontrib><creatorcontrib>Gratiy, Sergey L.</creatorcontrib><creatorcontrib>Dai, Kael</creatorcontrib><creatorcontrib>Iyer, Ramakrishnan</creatorcontrib><creatorcontrib>Gouwens, Nathan W.</creatorcontrib><creatorcontrib>Abbasi-Asl, Reza</creatorcontrib><creatorcontrib>Jia, Xiaoxuan</creatorcontrib><creatorcontrib>Siegle, Joshua H.</creatorcontrib><creatorcontrib>Olsen, Shawn R.</creatorcontrib><creatorcontrib>Koch, Christof</creatorcontrib><creatorcontrib>Mihalas, Stefan</creatorcontrib><creatorcontrib>Arkhipov, Anton</creatorcontrib><title>Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Structural rules underlying functional properties of cortical circuits are poorly understood. To explore these rules systematically, we integrated information from extensive literature curation and large-scale experimental surveys into a data-driven, biologically realistic simulation of the awake mouse primary visual cortex. The model was constructed at two levels of granularity, using either biophysically detailed or point neurons. Both variants have identical network connectivity and were compared to each other and to experimental recordings of visual-driven neural activity. While tuning these networks to recapitulate experimental data, we identified rules governing cell-class-specific connectivity and synaptic strengths. These structural constraints constitute hypotheses that can be tested experimentally. Despite their distinct single-cell abstraction, both spatially extended and point models perform similarly at the level of firing rate distributions for the questions we investigated. All data and models are freely available as a resource for the community.
[Display omitted]
•Two network models of the mouse primary visual cortex are developed and released•One uses compartmental-neuron models and the other point-neuron models•The models recapitulate observations from in vivo experimental data•Simulations identify experimentally testable predictions about cortex circuitry
Billeh et al. systematically integrate multi-modal data about neuron types, connectivity, and sensory innervations to create biologically realistic models of the mouse primary visual cortex at two levels of resolution, shared freely as a community resource.</description><subject>Animal models</subject><subject>Firing rate</subject><subject>Functional morphology</subject><subject>Information processing</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Physiology</subject><subject>Structure-function relationships</subject><subject>Visual cortex</subject><subject>Visual pathways</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9rFDEUx4Modlv9D0QCXrzM-DLJZHYugqy2FrootHgN2eRFssxOan6I_e_NMNWDB09JyOf7Xl4-hLxi0DJg8t2xnbHEMLcddNACa0HAE7JhMA6NYOP4lGxgO8pGdgM_I-cpHQGY6Ef2nJzxjolOiu2GhNuHlPGkszf0es74PdZtmGlw9DbHYnKJeqJ6tvSyzGa5qsePOmvq5xzovkzZN8noCek-WJzSktyHkpB-jf6k4wP95lOpoV2IGX-9IM-cnhK-fFwvyN3lp7vd5-bmy9X17sNNYwSXuZFGa5DyYIWwDizXHDumne6xdwyZFgfrBiE1DowzN1orDeemH8FxPPQjvyBv17L3MfwomLI6-WRwmvSM9XGq44PgMIBc0Df_oMdQYh2zUqLrpZRbua2UWCkTQ0oRnbpfx1MM1OJDHdXqQy0-FDBVfdTY68fi5XBC-zf0R0AF3q9A_Tr86TGqZDzOBq2PaLKywf-_w29HAp9h</recordid><startdate>20200506</startdate><enddate>20200506</enddate><creator>Billeh, Yazan N.</creator><creator>Cai, Binghuang</creator><creator>Gratiy, Sergey L.</creator><creator>Dai, Kael</creator><creator>Iyer, Ramakrishnan</creator><creator>Gouwens, Nathan W.</creator><creator>Abbasi-Asl, Reza</creator><creator>Jia, Xiaoxuan</creator><creator>Siegle, Joshua H.</creator><creator>Olsen, Shawn R.</creator><creator>Koch, Christof</creator><creator>Mihalas, Stefan</creator><creator>Arkhipov, Anton</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5200-4992</orcidid><orcidid>https://orcid.org/0000-0003-1106-8310</orcidid></search><sort><creationdate>20200506</creationdate><title>Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex</title><author>Billeh, Yazan N. ; Cai, Binghuang ; Gratiy, Sergey L. ; Dai, Kael ; Iyer, Ramakrishnan ; Gouwens, Nathan W. ; Abbasi-Asl, Reza ; Jia, Xiaoxuan ; Siegle, Joshua H. ; Olsen, Shawn R. ; Koch, Christof ; Mihalas, Stefan ; Arkhipov, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-6caa066bd44df0d3a3e21afa5e5f1e1a4bdf746ae7131f9dd6c33c590f3eb593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Firing rate</topic><topic>Functional morphology</topic><topic>Information processing</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Physiology</topic><topic>Structure-function relationships</topic><topic>Visual cortex</topic><topic>Visual pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Billeh, Yazan N.</creatorcontrib><creatorcontrib>Cai, Binghuang</creatorcontrib><creatorcontrib>Gratiy, Sergey L.</creatorcontrib><creatorcontrib>Dai, Kael</creatorcontrib><creatorcontrib>Iyer, Ramakrishnan</creatorcontrib><creatorcontrib>Gouwens, Nathan W.</creatorcontrib><creatorcontrib>Abbasi-Asl, Reza</creatorcontrib><creatorcontrib>Jia, Xiaoxuan</creatorcontrib><creatorcontrib>Siegle, Joshua H.</creatorcontrib><creatorcontrib>Olsen, Shawn R.</creatorcontrib><creatorcontrib>Koch, Christof</creatorcontrib><creatorcontrib>Mihalas, Stefan</creatorcontrib><creatorcontrib>Arkhipov, Anton</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Billeh, Yazan N.</au><au>Cai, Binghuang</au><au>Gratiy, Sergey L.</au><au>Dai, Kael</au><au>Iyer, Ramakrishnan</au><au>Gouwens, Nathan W.</au><au>Abbasi-Asl, Reza</au><au>Jia, Xiaoxuan</au><au>Siegle, Joshua H.</au><au>Olsen, Shawn R.</au><au>Koch, Christof</au><au>Mihalas, Stefan</au><au>Arkhipov, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2020-05-06</date><risdate>2020</risdate><volume>106</volume><issue>3</issue><spage>388</spage><epage>403.e18</epage><pages>388-403.e18</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Structural rules underlying functional properties of cortical circuits are poorly understood. To explore these rules systematically, we integrated information from extensive literature curation and large-scale experimental surveys into a data-driven, biologically realistic simulation of the awake mouse primary visual cortex. The model was constructed at two levels of granularity, using either biophysically detailed or point neurons. Both variants have identical network connectivity and were compared to each other and to experimental recordings of visual-driven neural activity. While tuning these networks to recapitulate experimental data, we identified rules governing cell-class-specific connectivity and synaptic strengths. These structural constraints constitute hypotheses that can be tested experimentally. Despite their distinct single-cell abstraction, both spatially extended and point models perform similarly at the level of firing rate distributions for the questions we investigated. All data and models are freely available as a resource for the community.
[Display omitted]
•Two network models of the mouse primary visual cortex are developed and released•One uses compartmental-neuron models and the other point-neuron models•The models recapitulate observations from in vivo experimental data•Simulations identify experimentally testable predictions about cortex circuitry
Billeh et al. systematically integrate multi-modal data about neuron types, connectivity, and sensory innervations to create biologically realistic models of the mouse primary visual cortex at two levels of resolution, shared freely as a community resource.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32142648</pmid><doi>10.1016/j.neuron.2020.01.040</doi><orcidid>https://orcid.org/0000-0001-5200-4992</orcidid><orcidid>https://orcid.org/0000-0003-1106-8310</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2020-05, Vol.106 (3), p.388-403.e18 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_2374307069 |
source | Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Animal models Firing rate Functional morphology Information processing Neural networks Neurons Physiology Structure-function relationships Visual cortex Visual pathways |
title | Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Integration%20of%20Structural%20and%20Functional%20Data%20into%20Multi-scale%20Models%20of%20Mouse%20Primary%20Visual%20Cortex&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Billeh,%20Yazan%20N.&rft.date=2020-05-06&rft.volume=106&rft.issue=3&rft.spage=388&rft.epage=403.e18&rft.pages=388-403.e18&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2020.01.040&rft_dat=%3Cproquest_cross%3E2374307069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425666868&rft_id=info:pmid/32142648&rft_els_id=S0896627320300672&rfr_iscdi=true |