A Physiologically Based in Silico Tool to Assess the Risk of Drug-Related Crystalluria
Drug precipitation in the nephrons of the kidney can cause drug-induced crystal nephropathy (DICN). To aid mitigation of this risk in early drug discovery, we developed a physiologically based in silico model to predict DICN in rats, dogs, and humans. At a minimum, the likelihood of DICN is determin...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2020-06, Vol.63 (12), p.6489-6498 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6498 |
---|---|
container_issue | 12 |
container_start_page | 6489 |
container_title | Journal of medicinal chemistry |
container_volume | 63 |
creator | Li, Zhenhong Litchfield, John Tess, David A Carlo, Anthony A Eng, Heather Keefer, Christopher Maurer, Tristan S |
description | Drug precipitation in the nephrons of the kidney can cause drug-induced crystal nephropathy (DICN). To aid mitigation of this risk in early drug discovery, we developed a physiologically based in silico model to predict DICN in rats, dogs, and humans. At a minimum, the likelihood of DICN is determined by the level of systemic exposure to the molecule, the molecule’s physicochemical properties and the unique physiology of the kidney. Accordingly, the proposed model accounts for these properties in order to predict drug exposure relative to solubility along the nephron. Key physiological parameters of the kidney were codified in a manner consistent with previous reports. Quantitative structure–activity relationship models and in vitro assays were used to estimate drug-specific physicochemical inputs to the model. The proposed model was calibrated against urinary excretion data for 42 drugs, and the utility for DICN prediction is demonstrated through application to 20 additional drugs. |
doi_str_mv | 10.1021/acs.jmedchem.9b01995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2371861619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371861619</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-36dc8ba440d8ffc1bab587d036acc299717f2791a716c41030484c0cbfd0c8173</originalsourceid><addsrcrecordid>eNp9kE1vGjEQhq2qVaBJ_kFV-djL0hnb7MeRkqStFCkRIbmuvF4vmBpMPbsH_n2dAD3mZI38vO9oHsa-IEwQBH7XhiabrW3N2m4nVQNYVdMPbIxTAZkqQX1kYwAhMpELOWKfiTYAIFHICzaSAmWapmP2MuOP6wO54MPKGe39gf_QZFvudvzJeWcCX4bgeR_4jMgS8X5t-cLRHx46fhOHVbawXvcpMY8H6lPDEJ2-Yp867clen95L9nx3u5z_yu4ffv6ez-4zLVXZZzJvTdlopaAtu85go5tpWbQgc22MqKoCi04UFeoCc6MQJKhSGTBN14IpsZCX7Nuxdx_D38FSX28dGeu93tkwUC1kgWWOOVYJVUfUxEAUbVfvo9vqeKgR6lejdTJan43WJ6Mp9vW0YWjS3__QWWEC4Ai8xcMQd-ng9zv_AccehMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371861619</pqid></control><display><type>article</type><title>A Physiologically Based in Silico Tool to Assess the Risk of Drug-Related Crystalluria</title><source>ACS Publications</source><creator>Li, Zhenhong ; Litchfield, John ; Tess, David A ; Carlo, Anthony A ; Eng, Heather ; Keefer, Christopher ; Maurer, Tristan S</creator><creatorcontrib>Li, Zhenhong ; Litchfield, John ; Tess, David A ; Carlo, Anthony A ; Eng, Heather ; Keefer, Christopher ; Maurer, Tristan S</creatorcontrib><description>Drug precipitation in the nephrons of the kidney can cause drug-induced crystal nephropathy (DICN). To aid mitigation of this risk in early drug discovery, we developed a physiologically based in silico model to predict DICN in rats, dogs, and humans. At a minimum, the likelihood of DICN is determined by the level of systemic exposure to the molecule, the molecule’s physicochemical properties and the unique physiology of the kidney. Accordingly, the proposed model accounts for these properties in order to predict drug exposure relative to solubility along the nephron. Key physiological parameters of the kidney were codified in a manner consistent with previous reports. Quantitative structure–activity relationship models and in vitro assays were used to estimate drug-specific physicochemical inputs to the model. The proposed model was calibrated against urinary excretion data for 42 drugs, and the utility for DICN prediction is demonstrated through application to 20 additional drugs.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.9b01995</identifier><identifier>PMID: 32130005</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of medicinal chemistry, 2020-06, Vol.63 (12), p.6489-6498</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-36dc8ba440d8ffc1bab587d036acc299717f2791a716c41030484c0cbfd0c8173</citedby><cites>FETCH-LOGICAL-a348t-36dc8ba440d8ffc1bab587d036acc299717f2791a716c41030484c0cbfd0c8173</cites><orcidid>0000-0002-2451-2436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.9b01995$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jmedchem.9b01995$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32130005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhenhong</creatorcontrib><creatorcontrib>Litchfield, John</creatorcontrib><creatorcontrib>Tess, David A</creatorcontrib><creatorcontrib>Carlo, Anthony A</creatorcontrib><creatorcontrib>Eng, Heather</creatorcontrib><creatorcontrib>Keefer, Christopher</creatorcontrib><creatorcontrib>Maurer, Tristan S</creatorcontrib><title>A Physiologically Based in Silico Tool to Assess the Risk of Drug-Related Crystalluria</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Drug precipitation in the nephrons of the kidney can cause drug-induced crystal nephropathy (DICN). To aid mitigation of this risk in early drug discovery, we developed a physiologically based in silico model to predict DICN in rats, dogs, and humans. At a minimum, the likelihood of DICN is determined by the level of systemic exposure to the molecule, the molecule’s physicochemical properties and the unique physiology of the kidney. Accordingly, the proposed model accounts for these properties in order to predict drug exposure relative to solubility along the nephron. Key physiological parameters of the kidney were codified in a manner consistent with previous reports. Quantitative structure–activity relationship models and in vitro assays were used to estimate drug-specific physicochemical inputs to the model. The proposed model was calibrated against urinary excretion data for 42 drugs, and the utility for DICN prediction is demonstrated through application to 20 additional drugs.</description><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1vGjEQhq2qVaBJ_kFV-djL0hnb7MeRkqStFCkRIbmuvF4vmBpMPbsH_n2dAD3mZI38vO9oHsa-IEwQBH7XhiabrW3N2m4nVQNYVdMPbIxTAZkqQX1kYwAhMpELOWKfiTYAIFHICzaSAmWapmP2MuOP6wO54MPKGe39gf_QZFvudvzJeWcCX4bgeR_4jMgS8X5t-cLRHx46fhOHVbawXvcpMY8H6lPDEJ2-Yp867clen95L9nx3u5z_yu4ffv6ez-4zLVXZZzJvTdlopaAtu85go5tpWbQgc22MqKoCi04UFeoCc6MQJKhSGTBN14IpsZCX7Nuxdx_D38FSX28dGeu93tkwUC1kgWWOOVYJVUfUxEAUbVfvo9vqeKgR6lejdTJan43WJ6Mp9vW0YWjS3__QWWEC4Ai8xcMQd-ng9zv_AccehMY</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Li, Zhenhong</creator><creator>Litchfield, John</creator><creator>Tess, David A</creator><creator>Carlo, Anthony A</creator><creator>Eng, Heather</creator><creator>Keefer, Christopher</creator><creator>Maurer, Tristan S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2451-2436</orcidid></search><sort><creationdate>20200625</creationdate><title>A Physiologically Based in Silico Tool to Assess the Risk of Drug-Related Crystalluria</title><author>Li, Zhenhong ; Litchfield, John ; Tess, David A ; Carlo, Anthony A ; Eng, Heather ; Keefer, Christopher ; Maurer, Tristan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-36dc8ba440d8ffc1bab587d036acc299717f2791a716c41030484c0cbfd0c8173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhenhong</creatorcontrib><creatorcontrib>Litchfield, John</creatorcontrib><creatorcontrib>Tess, David A</creatorcontrib><creatorcontrib>Carlo, Anthony A</creatorcontrib><creatorcontrib>Eng, Heather</creatorcontrib><creatorcontrib>Keefer, Christopher</creatorcontrib><creatorcontrib>Maurer, Tristan S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhenhong</au><au>Litchfield, John</au><au>Tess, David A</au><au>Carlo, Anthony A</au><au>Eng, Heather</au><au>Keefer, Christopher</au><au>Maurer, Tristan S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Physiologically Based in Silico Tool to Assess the Risk of Drug-Related Crystalluria</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2020-06-25</date><risdate>2020</risdate><volume>63</volume><issue>12</issue><spage>6489</spage><epage>6498</epage><pages>6489-6498</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>Drug precipitation in the nephrons of the kidney can cause drug-induced crystal nephropathy (DICN). To aid mitigation of this risk in early drug discovery, we developed a physiologically based in silico model to predict DICN in rats, dogs, and humans. At a minimum, the likelihood of DICN is determined by the level of systemic exposure to the molecule, the molecule’s physicochemical properties and the unique physiology of the kidney. Accordingly, the proposed model accounts for these properties in order to predict drug exposure relative to solubility along the nephron. Key physiological parameters of the kidney were codified in a manner consistent with previous reports. Quantitative structure–activity relationship models and in vitro assays were used to estimate drug-specific physicochemical inputs to the model. The proposed model was calibrated against urinary excretion data for 42 drugs, and the utility for DICN prediction is demonstrated through application to 20 additional drugs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32130005</pmid><doi>10.1021/acs.jmedchem.9b01995</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2451-2436</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2623 |
ispartof | Journal of medicinal chemistry, 2020-06, Vol.63 (12), p.6489-6498 |
issn | 0022-2623 1520-4804 |
language | eng |
recordid | cdi_proquest_miscellaneous_2371861619 |
source | ACS Publications |
title | A Physiologically Based in Silico Tool to Assess the Risk of Drug-Related Crystalluria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Physiologically%20Based%20in%20Silico%20Tool%20to%20Assess%20the%20Risk%20of%20Drug-Related%20Crystalluria&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Li,%20Zhenhong&rft.date=2020-06-25&rft.volume=63&rft.issue=12&rft.spage=6489&rft.epage=6498&rft.pages=6489-6498&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.9b01995&rft_dat=%3Cproquest_cross%3E2371861619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371861619&rft_id=info:pmid/32130005&rfr_iscdi=true |