Expanding attributable fraction applications to outcomes wholly attributable to a risk factor

The problem central to this document is the estimation of change in disease attributable to an epidemiological exposure variable that stems from a change in the distribution of that variable. We require that both disease and exposure are quantifiable as real numbers, and then ask how to estimate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2020-09, Vol.29 (9), p.2637-2646
Hauptverfasser: Churchill, Samuel, Angus, Colin, Purshouse, Robin, Brennan, Alan, Sherk, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2646
container_issue 9
container_start_page 2637
container_title Statistical methods in medical research
container_volume 29
creator Churchill, Samuel
Angus, Colin
Purshouse, Robin
Brennan, Alan
Sherk, Adam
description The problem central to this document is the estimation of change in disease attributable to an epidemiological exposure variable that stems from a change in the distribution of that variable. We require that both disease and exposure are quantifiable as real numbers, and then ask how to estimate the fraction of disease attributable to exposure, producing the general attributable fraction methodology. After the mathematical framework is in place, we explore the implications of a disease that is wholly attributable to a given risk factor, demonstrate why standard applications of the attributable fractions do not extend, and present general methodological considerations for this case. Finally, we demonstrate the methodology using the example of alcoholic psychoses.
doi_str_mv 10.1177/0962280220907113
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2371860512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280220907113</sage_id><sourcerecordid>2429428336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-b50897f801c0a0ae0f2d2ba38c6cf35c10ec930ecab24fe535f83b37866db7e73</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMo7rp69yQBL16qk0zbtEdZ1g9Y8KJHKWmarF3bpiYtuv-9LbsqCl4mA-_33oRHyCmDS8aEuII05jwBziEFwRjukSkLhQgAMdwn01EORn1CjrxfA4CAMD0kE-QMMUUxJc-Lj1Y2RdmsqOw6V-Z9J_NKU-Ok6krbUNm2VankuHvaWWr7Ttlae_r-Yqtq89s16JK60r9SM9itOyYHRlZen-zeGXm6WTzO74Llw-39_HoZqBBEF-QRJKkwCTAFEqQGwwueS0xUrAxGioFWKQ5D5jw0OsLIJJijSOK4yIUWOCMX29zW2bde-y6rS690VclG295nHAVLYogYH9DzP-ja9q4ZfpfxkKchTxDjgYItpZz13mmTta6spdtkDLKx-uxv9YPlbBfc57Uuvg1fXQ9AsAW8XOmfq_8GfgKrz4vc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429428336</pqid></control><display><type>article</type><title>Expanding attributable fraction applications to outcomes wholly attributable to a risk factor</title><source>SAGE Complete</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Churchill, Samuel ; Angus, Colin ; Purshouse, Robin ; Brennan, Alan ; Sherk, Adam</creator><creatorcontrib>Churchill, Samuel ; Angus, Colin ; Purshouse, Robin ; Brennan, Alan ; Sherk, Adam</creatorcontrib><description>The problem central to this document is the estimation of change in disease attributable to an epidemiological exposure variable that stems from a change in the distribution of that variable. We require that both disease and exposure are quantifiable as real numbers, and then ask how to estimate the fraction of disease attributable to exposure, producing the general attributable fraction methodology. After the mathematical framework is in place, we explore the implications of a disease that is wholly attributable to a given risk factor, demonstrate why standard applications of the attributable fractions do not extend, and present general methodological considerations for this case. Finally, we demonstrate the methodology using the example of alcoholic psychoses.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280220907113</identifier><identifier>PMID: 32133937</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Exposure ; Psychosis ; Real numbers ; Research methodology ; Risk analysis</subject><ispartof>Statistical methods in medical research, 2020-09, Vol.29 (9), p.2637-2646</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-b50897f801c0a0ae0f2d2ba38c6cf35c10ec930ecab24fe535f83b37866db7e73</citedby><cites>FETCH-LOGICAL-c407t-b50897f801c0a0ae0f2d2ba38c6cf35c10ec930ecab24fe535f83b37866db7e73</cites><orcidid>0000-0003-2731-8142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280220907113$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280220907113$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,30980,43602,43603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32133937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Churchill, Samuel</creatorcontrib><creatorcontrib>Angus, Colin</creatorcontrib><creatorcontrib>Purshouse, Robin</creatorcontrib><creatorcontrib>Brennan, Alan</creatorcontrib><creatorcontrib>Sherk, Adam</creatorcontrib><title>Expanding attributable fraction applications to outcomes wholly attributable to a risk factor</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>The problem central to this document is the estimation of change in disease attributable to an epidemiological exposure variable that stems from a change in the distribution of that variable. We require that both disease and exposure are quantifiable as real numbers, and then ask how to estimate the fraction of disease attributable to exposure, producing the general attributable fraction methodology. After the mathematical framework is in place, we explore the implications of a disease that is wholly attributable to a given risk factor, demonstrate why standard applications of the attributable fractions do not extend, and present general methodological considerations for this case. Finally, we demonstrate the methodology using the example of alcoholic psychoses.</description><subject>Exposure</subject><subject>Psychosis</subject><subject>Real numbers</subject><subject>Research methodology</subject><subject>Risk analysis</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kM1LxDAQxYMo7rp69yQBL16qk0zbtEdZ1g9Y8KJHKWmarF3bpiYtuv-9LbsqCl4mA-_33oRHyCmDS8aEuII05jwBziEFwRjukSkLhQgAMdwn01EORn1CjrxfA4CAMD0kE-QMMUUxJc-Lj1Y2RdmsqOw6V-Z9J_NKU-Ok6krbUNm2VankuHvaWWr7Ttlae_r-Yqtq89s16JK60r9SM9itOyYHRlZen-zeGXm6WTzO74Llw-39_HoZqBBEF-QRJKkwCTAFEqQGwwueS0xUrAxGioFWKQ5D5jw0OsLIJJijSOK4yIUWOCMX29zW2bde-y6rS690VclG295nHAVLYogYH9DzP-ja9q4ZfpfxkKchTxDjgYItpZz13mmTta6spdtkDLKx-uxv9YPlbBfc57Uuvg1fXQ9AsAW8XOmfq_8GfgKrz4vc</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Churchill, Samuel</creator><creator>Angus, Colin</creator><creator>Purshouse, Robin</creator><creator>Brennan, Alan</creator><creator>Sherk, Adam</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2731-8142</orcidid></search><sort><creationdate>20200901</creationdate><title>Expanding attributable fraction applications to outcomes wholly attributable to a risk factor</title><author>Churchill, Samuel ; Angus, Colin ; Purshouse, Robin ; Brennan, Alan ; Sherk, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-b50897f801c0a0ae0f2d2ba38c6cf35c10ec930ecab24fe535f83b37866db7e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Exposure</topic><topic>Psychosis</topic><topic>Real numbers</topic><topic>Research methodology</topic><topic>Risk analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Churchill, Samuel</creatorcontrib><creatorcontrib>Angus, Colin</creatorcontrib><creatorcontrib>Purshouse, Robin</creatorcontrib><creatorcontrib>Brennan, Alan</creatorcontrib><creatorcontrib>Sherk, Adam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Churchill, Samuel</au><au>Angus, Colin</au><au>Purshouse, Robin</au><au>Brennan, Alan</au><au>Sherk, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expanding attributable fraction applications to outcomes wholly attributable to a risk factor</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>29</volume><issue>9</issue><spage>2637</spage><epage>2646</epage><pages>2637-2646</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>The problem central to this document is the estimation of change in disease attributable to an epidemiological exposure variable that stems from a change in the distribution of that variable. We require that both disease and exposure are quantifiable as real numbers, and then ask how to estimate the fraction of disease attributable to exposure, producing the general attributable fraction methodology. After the mathematical framework is in place, we explore the implications of a disease that is wholly attributable to a given risk factor, demonstrate why standard applications of the attributable fractions do not extend, and present general methodological considerations for this case. Finally, we demonstrate the methodology using the example of alcoholic psychoses.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>32133937</pmid><doi>10.1177/0962280220907113</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2731-8142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2020-09, Vol.29 (9), p.2637-2646
issn 0962-2802
1477-0334
language eng
recordid cdi_proquest_miscellaneous_2371860512
source SAGE Complete; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Exposure
Psychosis
Real numbers
Research methodology
Risk analysis
title Expanding attributable fraction applications to outcomes wholly attributable to a risk factor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expanding%20attributable%20fraction%20applications%20to%20outcomes%20wholly%20attributable%20to%20a%20risk%20factor&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Churchill,%20Samuel&rft.date=2020-09-01&rft.volume=29&rft.issue=9&rft.spage=2637&rft.epage=2646&rft.pages=2637-2646&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280220907113&rft_dat=%3Cproquest_cross%3E2429428336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429428336&rft_id=info:pmid/32133937&rft_sage_id=10.1177_0962280220907113&rfr_iscdi=true