Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis
Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes 1 – 3 , the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are p...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-03, Vol.579 (7798), p.279-283 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | 7798 |
container_start_page | 279 |
container_title | Nature (London) |
container_volume | 579 |
creator | Perry, Rachel J. Zhang, Dongyan Guerra, Mateus T. Brill, Allison L. Goedeke, Leigh Nasiri, Ali R. Rabin-Court, Aviva Wang, Yongliang Peng, Liang Dufour, Sylvie Zhang, Ye Zhang, Xian-Man Butrico, Gina M. Toussaint, Keshia Nozaki, Yuichi Cline, Gary W. Petersen, Kitt Falk Nathanson, Michael H. Ehrlich, Barbara E. Shulman, Gerald I. |
description | Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes
1
–
3
, the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation—all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment—reversing hepatic steatosis and glucose intolerance—were abrogated in
Insp3r1
(also known as
Itpr1
)-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes.
A role and mechanism of action are identified for INSP3R1 in the stimulation of hepatic gluconeogenesis and mitochondrial oxidation by glucagon, suggesting that INSP3R1 may be a target for ameliorating dysregulation of hepatic glucose metabolism. |
doi_str_mv | 10.1038/s41586-020-2074-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2371851078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660270486</galeid><sourcerecordid>A660270486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c654t-bd6d0f562e2fbe6a1f4d674ca78f553c23c82b7569441b9cdb4a94902e9b9e7c3</originalsourceid><addsrcrecordid>eNp10stq3DAUBmBRWppJ2gfopphmk1CU6i55OQxNMhDSkqR0KWRZdhV8i2RD5-0jM2nTKRO8MMjfOYjfPwAfMDrDiKovkWGuBEQEQYIkg-IVWGAmBWRCyddggRBRECkqDsBhjPcIIY4lewsOKMGUSKQWYH3RTNbUfZfF0bdTY0YXszqd9Z3ra9e56GNWbLL19e13eoNh60qfTJn9coMZvc0aP_TNJql34E1lmujeP72PwI_zr3erS3j17WK9Wl5BKzgbYVGKElVcEEeqwgmDK1YKyayRquKcWkKtIoXkImcMF7ktC2ZyliPi8iJ30tIjcLLdO4T-YXJx1K2P1jWNSTeeoiZUYsUxkirR4__ofT-FLt0uKZUio1zKZ1WbxmnfVf0YjJ2X6qUQKOXElEgK7lFzQsE0KazKp-Md_2mPt4N_0P-isz0oPaVrvd279XRnIJnR_R5rM8Wo17c3u_bzy3Z593N1vavxVtvQxxhcpYfgWxM2GiM9t01v26ZT2_TcNj3PfHzKdypSMf5O_KlXAmQLYvrU1S48_4CXtz4CEiPZeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382073577</pqid></control><display><type>article</type><title>Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Perry, Rachel J. ; Zhang, Dongyan ; Guerra, Mateus T. ; Brill, Allison L. ; Goedeke, Leigh ; Nasiri, Ali R. ; Rabin-Court, Aviva ; Wang, Yongliang ; Peng, Liang ; Dufour, Sylvie ; Zhang, Ye ; Zhang, Xian-Man ; Butrico, Gina M. ; Toussaint, Keshia ; Nozaki, Yuichi ; Cline, Gary W. ; Petersen, Kitt Falk ; Nathanson, Michael H. ; Ehrlich, Barbara E. ; Shulman, Gerald I.</creator><creatorcontrib>Perry, Rachel J. ; Zhang, Dongyan ; Guerra, Mateus T. ; Brill, Allison L. ; Goedeke, Leigh ; Nasiri, Ali R. ; Rabin-Court, Aviva ; Wang, Yongliang ; Peng, Liang ; Dufour, Sylvie ; Zhang, Ye ; Zhang, Xian-Man ; Butrico, Gina M. ; Toussaint, Keshia ; Nozaki, Yuichi ; Cline, Gary W. ; Petersen, Kitt Falk ; Nathanson, Michael H. ; Ehrlich, Barbara E. ; Shulman, Gerald I.</creatorcontrib><description>Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes
1
–
3
, the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation—all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment—reversing hepatic steatosis and glucose intolerance—were abrogated in
Insp3r1
(also known as
Itpr1
)-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes.
A role and mechanism of action are identified for INSP3R1 in the stimulation of hepatic gluconeogenesis and mitochondrial oxidation by glucagon, suggesting that INSP3R1 may be a target for ameliorating dysregulation of hepatic glucose metabolism.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2074-6</identifier><identifier>PMID: 32132708</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 59 ; 59/57 ; 631/443/319/1642/2037 ; 631/443/319/2723 ; 631/443/319/333/1465 ; 631/45/776/198 ; 692/163/2743/137/773 ; Acetyl Coenzyme A - metabolism ; Adipose Tissue - drug effects ; Animals ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Type 2 - physiopathology ; Enzyme Activation - drug effects ; Enzymes ; Fatty liver ; Glucagon ; Glucagon - blood ; Glucagon - pharmacology ; Gluconeogenesis ; Gluconeogenesis - drug effects ; Glucose ; Glucose metabolism ; Glucose tolerance ; Humanities and Social Sciences ; Inositol 1,4,5-trisphosphate receptors ; Inositol 1,4,5-Trisphosphate Receptors - genetics ; Inositol 1,4,5-Trisphosphate Receptors - metabolism ; Insulin ; Insulin resistance ; Intolerance ; Kinases ; Lipase ; Lipase - metabolism ; Lipids ; Lipolysis ; Lipolysis - drug effects ; Lipolysis - genetics ; Liver ; Liver - drug effects ; Liver diseases ; Mice, Knockout ; Mitochondria ; Mitochondria - drug effects ; multidisciplinary ; Non-alcoholic Fatty Liver Disease - physiopathology ; Observations ; Oxidation ; Oxidation-Reduction - drug effects ; Phosphorylation ; Physiological aspects ; Physiology ; Portal vein ; Proteins ; Pyruvate carboxylase ; Pyruvic acid ; Rodents ; Science ; Science (multidisciplinary) ; Steatosis ; Triglycerides ; Veins & arteries</subject><ispartof>Nature (London), 2020-03, Vol.579 (7798), p.279-283</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 12, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c654t-bd6d0f562e2fbe6a1f4d674ca78f553c23c82b7569441b9cdb4a94902e9b9e7c3</citedby><cites>FETCH-LOGICAL-c654t-bd6d0f562e2fbe6a1f4d674ca78f553c23c82b7569441b9cdb4a94902e9b9e7c3</cites><orcidid>0000-0002-8187-2753 ; 0000-0003-1529-5668 ; 0000-0001-9657-9704 ; 0000-0002-5046-3578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2074-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2074-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32132708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perry, Rachel J.</creatorcontrib><creatorcontrib>Zhang, Dongyan</creatorcontrib><creatorcontrib>Guerra, Mateus T.</creatorcontrib><creatorcontrib>Brill, Allison L.</creatorcontrib><creatorcontrib>Goedeke, Leigh</creatorcontrib><creatorcontrib>Nasiri, Ali R.</creatorcontrib><creatorcontrib>Rabin-Court, Aviva</creatorcontrib><creatorcontrib>Wang, Yongliang</creatorcontrib><creatorcontrib>Peng, Liang</creatorcontrib><creatorcontrib>Dufour, Sylvie</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Zhang, Xian-Man</creatorcontrib><creatorcontrib>Butrico, Gina M.</creatorcontrib><creatorcontrib>Toussaint, Keshia</creatorcontrib><creatorcontrib>Nozaki, Yuichi</creatorcontrib><creatorcontrib>Cline, Gary W.</creatorcontrib><creatorcontrib>Petersen, Kitt Falk</creatorcontrib><creatorcontrib>Nathanson, Michael H.</creatorcontrib><creatorcontrib>Ehrlich, Barbara E.</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><title>Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes
1
–
3
, the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation—all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment—reversing hepatic steatosis and glucose intolerance—were abrogated in
Insp3r1
(also known as
Itpr1
)-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes.
A role and mechanism of action are identified for INSP3R1 in the stimulation of hepatic gluconeogenesis and mitochondrial oxidation by glucagon, suggesting that INSP3R1 may be a target for ameliorating dysregulation of hepatic glucose metabolism.</description><subject>140/131</subject><subject>59</subject><subject>59/57</subject><subject>631/443/319/1642/2037</subject><subject>631/443/319/2723</subject><subject>631/443/319/333/1465</subject><subject>631/45/776/198</subject><subject>692/163/2743/137/773</subject><subject>Acetyl Coenzyme A - metabolism</subject><subject>Adipose Tissue - drug effects</subject><subject>Animals</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Type 2 - physiopathology</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzymes</subject><subject>Fatty liver</subject><subject>Glucagon</subject><subject>Glucagon - blood</subject><subject>Glucagon - pharmacology</subject><subject>Gluconeogenesis</subject><subject>Gluconeogenesis - drug effects</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glucose tolerance</subject><subject>Humanities and Social Sciences</subject><subject>Inositol 1,4,5-trisphosphate receptors</subject><subject>Inositol 1,4,5-Trisphosphate Receptors - genetics</subject><subject>Inositol 1,4,5-Trisphosphate Receptors - metabolism</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Intolerance</subject><subject>Kinases</subject><subject>Lipase</subject><subject>Lipase - metabolism</subject><subject>Lipids</subject><subject>Lipolysis</subject><subject>Lipolysis - drug effects</subject><subject>Lipolysis - genetics</subject><subject>Liver</subject><subject>Liver - drug effects</subject><subject>Liver diseases</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>multidisciplinary</subject><subject>Non-alcoholic Fatty Liver Disease - physiopathology</subject><subject>Observations</subject><subject>Oxidation</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Portal vein</subject><subject>Proteins</subject><subject>Pyruvate carboxylase</subject><subject>Pyruvic acid</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Steatosis</subject><subject>Triglycerides</subject><subject>Veins & arteries</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10stq3DAUBmBRWppJ2gfopphmk1CU6i55OQxNMhDSkqR0KWRZdhV8i2RD5-0jM2nTKRO8MMjfOYjfPwAfMDrDiKovkWGuBEQEQYIkg-IVWGAmBWRCyddggRBRECkqDsBhjPcIIY4lewsOKMGUSKQWYH3RTNbUfZfF0bdTY0YXszqd9Z3ra9e56GNWbLL19e13eoNh60qfTJn9coMZvc0aP_TNJql34E1lmujeP72PwI_zr3erS3j17WK9Wl5BKzgbYVGKElVcEEeqwgmDK1YKyayRquKcWkKtIoXkImcMF7ktC2ZyliPi8iJ30tIjcLLdO4T-YXJx1K2P1jWNSTeeoiZUYsUxkirR4__ofT-FLt0uKZUio1zKZ1WbxmnfVf0YjJ2X6qUQKOXElEgK7lFzQsE0KazKp-Md_2mPt4N_0P-isz0oPaVrvd279XRnIJnR_R5rM8Wo17c3u_bzy3Z593N1vavxVtvQxxhcpYfgWxM2GiM9t01v26ZT2_TcNj3PfHzKdypSMf5O_KlXAmQLYvrU1S48_4CXtz4CEiPZeg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Perry, Rachel J.</creator><creator>Zhang, Dongyan</creator><creator>Guerra, Mateus T.</creator><creator>Brill, Allison L.</creator><creator>Goedeke, Leigh</creator><creator>Nasiri, Ali R.</creator><creator>Rabin-Court, Aviva</creator><creator>Wang, Yongliang</creator><creator>Peng, Liang</creator><creator>Dufour, Sylvie</creator><creator>Zhang, Ye</creator><creator>Zhang, Xian-Man</creator><creator>Butrico, Gina M.</creator><creator>Toussaint, Keshia</creator><creator>Nozaki, Yuichi</creator><creator>Cline, Gary W.</creator><creator>Petersen, Kitt Falk</creator><creator>Nathanson, Michael H.</creator><creator>Ehrlich, Barbara E.</creator><creator>Shulman, Gerald I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8187-2753</orcidid><orcidid>https://orcid.org/0000-0003-1529-5668</orcidid><orcidid>https://orcid.org/0000-0001-9657-9704</orcidid><orcidid>https://orcid.org/0000-0002-5046-3578</orcidid></search><sort><creationdate>20200301</creationdate><title>Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis</title><author>Perry, Rachel J. ; Zhang, Dongyan ; Guerra, Mateus T. ; Brill, Allison L. ; Goedeke, Leigh ; Nasiri, Ali R. ; Rabin-Court, Aviva ; Wang, Yongliang ; Peng, Liang ; Dufour, Sylvie ; Zhang, Ye ; Zhang, Xian-Man ; Butrico, Gina M. ; Toussaint, Keshia ; Nozaki, Yuichi ; Cline, Gary W. ; Petersen, Kitt Falk ; Nathanson, Michael H. ; Ehrlich, Barbara E. ; Shulman, Gerald I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c654t-bd6d0f562e2fbe6a1f4d674ca78f553c23c82b7569441b9cdb4a94902e9b9e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/131</topic><topic>59</topic><topic>59/57</topic><topic>631/443/319/1642/2037</topic><topic>631/443/319/2723</topic><topic>631/443/319/333/1465</topic><topic>631/45/776/198</topic><topic>692/163/2743/137/773</topic><topic>Acetyl Coenzyme A - metabolism</topic><topic>Adipose Tissue - drug effects</topic><topic>Animals</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Type 2 - physiopathology</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzymes</topic><topic>Fatty liver</topic><topic>Glucagon</topic><topic>Glucagon - blood</topic><topic>Glucagon - pharmacology</topic><topic>Gluconeogenesis</topic><topic>Gluconeogenesis - drug effects</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glucose tolerance</topic><topic>Humanities and Social Sciences</topic><topic>Inositol 1,4,5-trisphosphate receptors</topic><topic>Inositol 1,4,5-Trisphosphate Receptors - genetics</topic><topic>Inositol 1,4,5-Trisphosphate Receptors - metabolism</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Intolerance</topic><topic>Kinases</topic><topic>Lipase</topic><topic>Lipase - metabolism</topic><topic>Lipids</topic><topic>Lipolysis</topic><topic>Lipolysis - drug effects</topic><topic>Lipolysis - genetics</topic><topic>Liver</topic><topic>Liver - drug effects</topic><topic>Liver diseases</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>multidisciplinary</topic><topic>Non-alcoholic Fatty Liver Disease - physiopathology</topic><topic>Observations</topic><topic>Oxidation</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Portal vein</topic><topic>Proteins</topic><topic>Pyruvate carboxylase</topic><topic>Pyruvic acid</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Steatosis</topic><topic>Triglycerides</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perry, Rachel J.</creatorcontrib><creatorcontrib>Zhang, Dongyan</creatorcontrib><creatorcontrib>Guerra, Mateus T.</creatorcontrib><creatorcontrib>Brill, Allison L.</creatorcontrib><creatorcontrib>Goedeke, Leigh</creatorcontrib><creatorcontrib>Nasiri, Ali R.</creatorcontrib><creatorcontrib>Rabin-Court, Aviva</creatorcontrib><creatorcontrib>Wang, Yongliang</creatorcontrib><creatorcontrib>Peng, Liang</creatorcontrib><creatorcontrib>Dufour, Sylvie</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Zhang, Xian-Man</creatorcontrib><creatorcontrib>Butrico, Gina M.</creatorcontrib><creatorcontrib>Toussaint, Keshia</creatorcontrib><creatorcontrib>Nozaki, Yuichi</creatorcontrib><creatorcontrib>Cline, Gary W.</creatorcontrib><creatorcontrib>Petersen, Kitt Falk</creatorcontrib><creatorcontrib>Nathanson, Michael H.</creatorcontrib><creatorcontrib>Ehrlich, Barbara E.</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perry, Rachel J.</au><au>Zhang, Dongyan</au><au>Guerra, Mateus T.</au><au>Brill, Allison L.</au><au>Goedeke, Leigh</au><au>Nasiri, Ali R.</au><au>Rabin-Court, Aviva</au><au>Wang, Yongliang</au><au>Peng, Liang</au><au>Dufour, Sylvie</au><au>Zhang, Ye</au><au>Zhang, Xian-Man</au><au>Butrico, Gina M.</au><au>Toussaint, Keshia</au><au>Nozaki, Yuichi</au><au>Cline, Gary W.</au><au>Petersen, Kitt Falk</au><au>Nathanson, Michael H.</au><au>Ehrlich, Barbara E.</au><au>Shulman, Gerald I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>579</volume><issue>7798</issue><spage>279</spage><epage>283</epage><pages>279-283</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes
1
–
3
, the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation—all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment—reversing hepatic steatosis and glucose intolerance—were abrogated in
Insp3r1
(also known as
Itpr1
)-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes.
A role and mechanism of action are identified for INSP3R1 in the stimulation of hepatic gluconeogenesis and mitochondrial oxidation by glucagon, suggesting that INSP3R1 may be a target for ameliorating dysregulation of hepatic glucose metabolism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32132708</pmid><doi>10.1038/s41586-020-2074-6</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8187-2753</orcidid><orcidid>https://orcid.org/0000-0003-1529-5668</orcidid><orcidid>https://orcid.org/0000-0001-9657-9704</orcidid><orcidid>https://orcid.org/0000-0002-5046-3578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-03, Vol.579 (7798), p.279-283 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2371851078 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 140/131 59 59/57 631/443/319/1642/2037 631/443/319/2723 631/443/319/333/1465 631/45/776/198 692/163/2743/137/773 Acetyl Coenzyme A - metabolism Adipose Tissue - drug effects Animals Diabetes Diabetes mellitus Diabetes Mellitus, Type 2 - physiopathology Enzyme Activation - drug effects Enzymes Fatty liver Glucagon Glucagon - blood Glucagon - pharmacology Gluconeogenesis Gluconeogenesis - drug effects Glucose Glucose metabolism Glucose tolerance Humanities and Social Sciences Inositol 1,4,5-trisphosphate receptors Inositol 1,4,5-Trisphosphate Receptors - genetics Inositol 1,4,5-Trisphosphate Receptors - metabolism Insulin Insulin resistance Intolerance Kinases Lipase Lipase - metabolism Lipids Lipolysis Lipolysis - drug effects Lipolysis - genetics Liver Liver - drug effects Liver diseases Mice, Knockout Mitochondria Mitochondria - drug effects multidisciplinary Non-alcoholic Fatty Liver Disease - physiopathology Observations Oxidation Oxidation-Reduction - drug effects Phosphorylation Physiological aspects Physiology Portal vein Proteins Pyruvate carboxylase Pyruvic acid Rodents Science Science (multidisciplinary) Steatosis Triglycerides Veins & arteries |
title | Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucagon%20stimulates%20gluconeogenesis%20by%20INSP3R1-mediated%20hepatic%20lipolysis&rft.jtitle=Nature%20(London)&rft.au=Perry,%20Rachel%20J.&rft.date=2020-03-01&rft.volume=579&rft.issue=7798&rft.spage=279&rft.epage=283&rft.pages=279-283&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2074-6&rft_dat=%3Cgale_proqu%3EA660270486%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382073577&rft_id=info:pmid/32132708&rft_galeid=A660270486&rfr_iscdi=true |