Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis

Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes 1 – 3 , the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2020-03, Vol.579 (7798), p.279-283
Hauptverfasser: Perry, Rachel J., Zhang, Dongyan, Guerra, Mateus T., Brill, Allison L., Goedeke, Leigh, Nasiri, Ali R., Rabin-Court, Aviva, Wang, Yongliang, Peng, Liang, Dufour, Sylvie, Zhang, Ye, Zhang, Xian-Man, Butrico, Gina M., Toussaint, Keshia, Nozaki, Yuichi, Cline, Gary W., Petersen, Kitt Falk, Nathanson, Michael H., Ehrlich, Barbara E., Shulman, Gerald I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue 7798
container_start_page 279
container_title Nature (London)
container_volume 579
creator Perry, Rachel J.
Zhang, Dongyan
Guerra, Mateus T.
Brill, Allison L.
Goedeke, Leigh
Nasiri, Ali R.
Rabin-Court, Aviva
Wang, Yongliang
Peng, Liang
Dufour, Sylvie
Zhang, Ye
Zhang, Xian-Man
Butrico, Gina M.
Toussaint, Keshia
Nozaki, Yuichi
Cline, Gary W.
Petersen, Kitt Falk
Nathanson, Michael H.
Ehrlich, Barbara E.
Shulman, Gerald I.
description Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes 1 – 3 , the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation—all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment—reversing hepatic steatosis and glucose intolerance—were abrogated in Insp3r1 (also known as Itpr1 )-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes. A role and mechanism of action are identified for INSP3R1 in the stimulation of hepatic gluconeogenesis and mitochondrial oxidation by glucagon, suggesting that INSP3R1 may be a target for ameliorating dysregulation of hepatic glucose metabolism.
doi_str_mv 10.1038/s41586-020-2074-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2371851078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660270486</galeid><sourcerecordid>A660270486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c654t-bd6d0f562e2fbe6a1f4d674ca78f553c23c82b7569441b9cdb4a94902e9b9e7c3</originalsourceid><addsrcrecordid>eNp10stq3DAUBmBRWppJ2gfopphmk1CU6i55OQxNMhDSkqR0KWRZdhV8i2RD5-0jM2nTKRO8MMjfOYjfPwAfMDrDiKovkWGuBEQEQYIkg-IVWGAmBWRCyddggRBRECkqDsBhjPcIIY4lewsOKMGUSKQWYH3RTNbUfZfF0bdTY0YXszqd9Z3ra9e56GNWbLL19e13eoNh60qfTJn9coMZvc0aP_TNJql34E1lmujeP72PwI_zr3erS3j17WK9Wl5BKzgbYVGKElVcEEeqwgmDK1YKyayRquKcWkKtIoXkImcMF7ktC2ZyliPi8iJ30tIjcLLdO4T-YXJx1K2P1jWNSTeeoiZUYsUxkirR4__ofT-FLt0uKZUio1zKZ1WbxmnfVf0YjJ2X6qUQKOXElEgK7lFzQsE0KazKp-Md_2mPt4N_0P-isz0oPaVrvd279XRnIJnR_R5rM8Wo17c3u_bzy3Z593N1vavxVtvQxxhcpYfgWxM2GiM9t01v26ZT2_TcNj3PfHzKdypSMf5O_KlXAmQLYvrU1S48_4CXtz4CEiPZeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382073577</pqid></control><display><type>article</type><title>Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Perry, Rachel J. ; Zhang, Dongyan ; Guerra, Mateus T. ; Brill, Allison L. ; Goedeke, Leigh ; Nasiri, Ali R. ; Rabin-Court, Aviva ; Wang, Yongliang ; Peng, Liang ; Dufour, Sylvie ; Zhang, Ye ; Zhang, Xian-Man ; Butrico, Gina M. ; Toussaint, Keshia ; Nozaki, Yuichi ; Cline, Gary W. ; Petersen, Kitt Falk ; Nathanson, Michael H. ; Ehrlich, Barbara E. ; Shulman, Gerald I.</creator><creatorcontrib>Perry, Rachel J. ; Zhang, Dongyan ; Guerra, Mateus T. ; Brill, Allison L. ; Goedeke, Leigh ; Nasiri, Ali R. ; Rabin-Court, Aviva ; Wang, Yongliang ; Peng, Liang ; Dufour, Sylvie ; Zhang, Ye ; Zhang, Xian-Man ; Butrico, Gina M. ; Toussaint, Keshia ; Nozaki, Yuichi ; Cline, Gary W. ; Petersen, Kitt Falk ; Nathanson, Michael H. ; Ehrlich, Barbara E. ; Shulman, Gerald I.</creatorcontrib><description>Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes 1 – 3 , the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation—all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment—reversing hepatic steatosis and glucose intolerance—were abrogated in Insp3r1 (also known as Itpr1 )-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes. A role and mechanism of action are identified for INSP3R1 in the stimulation of hepatic gluconeogenesis and mitochondrial oxidation by glucagon, suggesting that INSP3R1 may be a target for ameliorating dysregulation of hepatic glucose metabolism.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2074-6</identifier><identifier>PMID: 32132708</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 59 ; 59/57 ; 631/443/319/1642/2037 ; 631/443/319/2723 ; 631/443/319/333/1465 ; 631/45/776/198 ; 692/163/2743/137/773 ; Acetyl Coenzyme A - metabolism ; Adipose Tissue - drug effects ; Animals ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Type 2 - physiopathology ; Enzyme Activation - drug effects ; Enzymes ; Fatty liver ; Glucagon ; Glucagon - blood ; Glucagon - pharmacology ; Gluconeogenesis ; Gluconeogenesis - drug effects ; Glucose ; Glucose metabolism ; Glucose tolerance ; Humanities and Social Sciences ; Inositol 1,4,5-trisphosphate receptors ; Inositol 1,4,5-Trisphosphate Receptors - genetics ; Inositol 1,4,5-Trisphosphate Receptors - metabolism ; Insulin ; Insulin resistance ; Intolerance ; Kinases ; Lipase ; Lipase - metabolism ; Lipids ; Lipolysis ; Lipolysis - drug effects ; Lipolysis - genetics ; Liver ; Liver - drug effects ; Liver diseases ; Mice, Knockout ; Mitochondria ; Mitochondria - drug effects ; multidisciplinary ; Non-alcoholic Fatty Liver Disease - physiopathology ; Observations ; Oxidation ; Oxidation-Reduction - drug effects ; Phosphorylation ; Physiological aspects ; Physiology ; Portal vein ; Proteins ; Pyruvate carboxylase ; Pyruvic acid ; Rodents ; Science ; Science (multidisciplinary) ; Steatosis ; Triglycerides ; Veins &amp; arteries</subject><ispartof>Nature (London), 2020-03, Vol.579 (7798), p.279-283</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 12, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c654t-bd6d0f562e2fbe6a1f4d674ca78f553c23c82b7569441b9cdb4a94902e9b9e7c3</citedby><cites>FETCH-LOGICAL-c654t-bd6d0f562e2fbe6a1f4d674ca78f553c23c82b7569441b9cdb4a94902e9b9e7c3</cites><orcidid>0000-0002-8187-2753 ; 0000-0003-1529-5668 ; 0000-0001-9657-9704 ; 0000-0002-5046-3578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2074-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2074-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32132708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perry, Rachel J.</creatorcontrib><creatorcontrib>Zhang, Dongyan</creatorcontrib><creatorcontrib>Guerra, Mateus T.</creatorcontrib><creatorcontrib>Brill, Allison L.</creatorcontrib><creatorcontrib>Goedeke, Leigh</creatorcontrib><creatorcontrib>Nasiri, Ali R.</creatorcontrib><creatorcontrib>Rabin-Court, Aviva</creatorcontrib><creatorcontrib>Wang, Yongliang</creatorcontrib><creatorcontrib>Peng, Liang</creatorcontrib><creatorcontrib>Dufour, Sylvie</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Zhang, Xian-Man</creatorcontrib><creatorcontrib>Butrico, Gina M.</creatorcontrib><creatorcontrib>Toussaint, Keshia</creatorcontrib><creatorcontrib>Nozaki, Yuichi</creatorcontrib><creatorcontrib>Cline, Gary W.</creatorcontrib><creatorcontrib>Petersen, Kitt Falk</creatorcontrib><creatorcontrib>Nathanson, Michael H.</creatorcontrib><creatorcontrib>Ehrlich, Barbara E.</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><title>Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes 1 – 3 , the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation—all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment—reversing hepatic steatosis and glucose intolerance—were abrogated in Insp3r1 (also known as Itpr1 )-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes. A role and mechanism of action are identified for INSP3R1 in the stimulation of hepatic gluconeogenesis and mitochondrial oxidation by glucagon, suggesting that INSP3R1 may be a target for ameliorating dysregulation of hepatic glucose metabolism.</description><subject>140/131</subject><subject>59</subject><subject>59/57</subject><subject>631/443/319/1642/2037</subject><subject>631/443/319/2723</subject><subject>631/443/319/333/1465</subject><subject>631/45/776/198</subject><subject>692/163/2743/137/773</subject><subject>Acetyl Coenzyme A - metabolism</subject><subject>Adipose Tissue - drug effects</subject><subject>Animals</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Type 2 - physiopathology</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzymes</subject><subject>Fatty liver</subject><subject>Glucagon</subject><subject>Glucagon - blood</subject><subject>Glucagon - pharmacology</subject><subject>Gluconeogenesis</subject><subject>Gluconeogenesis - drug effects</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glucose tolerance</subject><subject>Humanities and Social Sciences</subject><subject>Inositol 1,4,5-trisphosphate receptors</subject><subject>Inositol 1,4,5-Trisphosphate Receptors - genetics</subject><subject>Inositol 1,4,5-Trisphosphate Receptors - metabolism</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Intolerance</subject><subject>Kinases</subject><subject>Lipase</subject><subject>Lipase - metabolism</subject><subject>Lipids</subject><subject>Lipolysis</subject><subject>Lipolysis - drug effects</subject><subject>Lipolysis - genetics</subject><subject>Liver</subject><subject>Liver - drug effects</subject><subject>Liver diseases</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>multidisciplinary</subject><subject>Non-alcoholic Fatty Liver Disease - physiopathology</subject><subject>Observations</subject><subject>Oxidation</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Portal vein</subject><subject>Proteins</subject><subject>Pyruvate carboxylase</subject><subject>Pyruvic acid</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Steatosis</subject><subject>Triglycerides</subject><subject>Veins &amp; arteries</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10stq3DAUBmBRWppJ2gfopphmk1CU6i55OQxNMhDSkqR0KWRZdhV8i2RD5-0jM2nTKRO8MMjfOYjfPwAfMDrDiKovkWGuBEQEQYIkg-IVWGAmBWRCyddggRBRECkqDsBhjPcIIY4lewsOKMGUSKQWYH3RTNbUfZfF0bdTY0YXszqd9Z3ra9e56GNWbLL19e13eoNh60qfTJn9coMZvc0aP_TNJql34E1lmujeP72PwI_zr3erS3j17WK9Wl5BKzgbYVGKElVcEEeqwgmDK1YKyayRquKcWkKtIoXkImcMF7ktC2ZyliPi8iJ30tIjcLLdO4T-YXJx1K2P1jWNSTeeoiZUYsUxkirR4__ofT-FLt0uKZUio1zKZ1WbxmnfVf0YjJ2X6qUQKOXElEgK7lFzQsE0KazKp-Md_2mPt4N_0P-isz0oPaVrvd279XRnIJnR_R5rM8Wo17c3u_bzy3Z593N1vavxVtvQxxhcpYfgWxM2GiM9t01v26ZT2_TcNj3PfHzKdypSMf5O_KlXAmQLYvrU1S48_4CXtz4CEiPZeg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Perry, Rachel J.</creator><creator>Zhang, Dongyan</creator><creator>Guerra, Mateus T.</creator><creator>Brill, Allison L.</creator><creator>Goedeke, Leigh</creator><creator>Nasiri, Ali R.</creator><creator>Rabin-Court, Aviva</creator><creator>Wang, Yongliang</creator><creator>Peng, Liang</creator><creator>Dufour, Sylvie</creator><creator>Zhang, Ye</creator><creator>Zhang, Xian-Man</creator><creator>Butrico, Gina M.</creator><creator>Toussaint, Keshia</creator><creator>Nozaki, Yuichi</creator><creator>Cline, Gary W.</creator><creator>Petersen, Kitt Falk</creator><creator>Nathanson, Michael H.</creator><creator>Ehrlich, Barbara E.</creator><creator>Shulman, Gerald I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8187-2753</orcidid><orcidid>https://orcid.org/0000-0003-1529-5668</orcidid><orcidid>https://orcid.org/0000-0001-9657-9704</orcidid><orcidid>https://orcid.org/0000-0002-5046-3578</orcidid></search><sort><creationdate>20200301</creationdate><title>Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis</title><author>Perry, Rachel J. ; Zhang, Dongyan ; Guerra, Mateus T. ; Brill, Allison L. ; Goedeke, Leigh ; Nasiri, Ali R. ; Rabin-Court, Aviva ; Wang, Yongliang ; Peng, Liang ; Dufour, Sylvie ; Zhang, Ye ; Zhang, Xian-Man ; Butrico, Gina M. ; Toussaint, Keshia ; Nozaki, Yuichi ; Cline, Gary W. ; Petersen, Kitt Falk ; Nathanson, Michael H. ; Ehrlich, Barbara E. ; Shulman, Gerald I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c654t-bd6d0f562e2fbe6a1f4d674ca78f553c23c82b7569441b9cdb4a94902e9b9e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/131</topic><topic>59</topic><topic>59/57</topic><topic>631/443/319/1642/2037</topic><topic>631/443/319/2723</topic><topic>631/443/319/333/1465</topic><topic>631/45/776/198</topic><topic>692/163/2743/137/773</topic><topic>Acetyl Coenzyme A - metabolism</topic><topic>Adipose Tissue - drug effects</topic><topic>Animals</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Type 2 - physiopathology</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzymes</topic><topic>Fatty liver</topic><topic>Glucagon</topic><topic>Glucagon - blood</topic><topic>Glucagon - pharmacology</topic><topic>Gluconeogenesis</topic><topic>Gluconeogenesis - drug effects</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glucose tolerance</topic><topic>Humanities and Social Sciences</topic><topic>Inositol 1,4,5-trisphosphate receptors</topic><topic>Inositol 1,4,5-Trisphosphate Receptors - genetics</topic><topic>Inositol 1,4,5-Trisphosphate Receptors - metabolism</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Intolerance</topic><topic>Kinases</topic><topic>Lipase</topic><topic>Lipase - metabolism</topic><topic>Lipids</topic><topic>Lipolysis</topic><topic>Lipolysis - drug effects</topic><topic>Lipolysis - genetics</topic><topic>Liver</topic><topic>Liver - drug effects</topic><topic>Liver diseases</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>multidisciplinary</topic><topic>Non-alcoholic Fatty Liver Disease - physiopathology</topic><topic>Observations</topic><topic>Oxidation</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Portal vein</topic><topic>Proteins</topic><topic>Pyruvate carboxylase</topic><topic>Pyruvic acid</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Steatosis</topic><topic>Triglycerides</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perry, Rachel J.</creatorcontrib><creatorcontrib>Zhang, Dongyan</creatorcontrib><creatorcontrib>Guerra, Mateus T.</creatorcontrib><creatorcontrib>Brill, Allison L.</creatorcontrib><creatorcontrib>Goedeke, Leigh</creatorcontrib><creatorcontrib>Nasiri, Ali R.</creatorcontrib><creatorcontrib>Rabin-Court, Aviva</creatorcontrib><creatorcontrib>Wang, Yongliang</creatorcontrib><creatorcontrib>Peng, Liang</creatorcontrib><creatorcontrib>Dufour, Sylvie</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Zhang, Xian-Man</creatorcontrib><creatorcontrib>Butrico, Gina M.</creatorcontrib><creatorcontrib>Toussaint, Keshia</creatorcontrib><creatorcontrib>Nozaki, Yuichi</creatorcontrib><creatorcontrib>Cline, Gary W.</creatorcontrib><creatorcontrib>Petersen, Kitt Falk</creatorcontrib><creatorcontrib>Nathanson, Michael H.</creatorcontrib><creatorcontrib>Ehrlich, Barbara E.</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perry, Rachel J.</au><au>Zhang, Dongyan</au><au>Guerra, Mateus T.</au><au>Brill, Allison L.</au><au>Goedeke, Leigh</au><au>Nasiri, Ali R.</au><au>Rabin-Court, Aviva</au><au>Wang, Yongliang</au><au>Peng, Liang</au><au>Dufour, Sylvie</au><au>Zhang, Ye</au><au>Zhang, Xian-Man</au><au>Butrico, Gina M.</au><au>Toussaint, Keshia</au><au>Nozaki, Yuichi</au><au>Cline, Gary W.</au><au>Petersen, Kitt Falk</au><au>Nathanson, Michael H.</au><au>Ehrlich, Barbara E.</au><au>Shulman, Gerald I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>579</volume><issue>7798</issue><spage>279</spage><epage>283</epage><pages>279-283</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes 1 – 3 , the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation—all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment—reversing hepatic steatosis and glucose intolerance—were abrogated in Insp3r1 (also known as Itpr1 )-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes. A role and mechanism of action are identified for INSP3R1 in the stimulation of hepatic gluconeogenesis and mitochondrial oxidation by glucagon, suggesting that INSP3R1 may be a target for ameliorating dysregulation of hepatic glucose metabolism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32132708</pmid><doi>10.1038/s41586-020-2074-6</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8187-2753</orcidid><orcidid>https://orcid.org/0000-0003-1529-5668</orcidid><orcidid>https://orcid.org/0000-0001-9657-9704</orcidid><orcidid>https://orcid.org/0000-0002-5046-3578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2020-03, Vol.579 (7798), p.279-283
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2371851078
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 140/131
59
59/57
631/443/319/1642/2037
631/443/319/2723
631/443/319/333/1465
631/45/776/198
692/163/2743/137/773
Acetyl Coenzyme A - metabolism
Adipose Tissue - drug effects
Animals
Diabetes
Diabetes mellitus
Diabetes Mellitus, Type 2 - physiopathology
Enzyme Activation - drug effects
Enzymes
Fatty liver
Glucagon
Glucagon - blood
Glucagon - pharmacology
Gluconeogenesis
Gluconeogenesis - drug effects
Glucose
Glucose metabolism
Glucose tolerance
Humanities and Social Sciences
Inositol 1,4,5-trisphosphate receptors
Inositol 1,4,5-Trisphosphate Receptors - genetics
Inositol 1,4,5-Trisphosphate Receptors - metabolism
Insulin
Insulin resistance
Intolerance
Kinases
Lipase
Lipase - metabolism
Lipids
Lipolysis
Lipolysis - drug effects
Lipolysis - genetics
Liver
Liver - drug effects
Liver diseases
Mice, Knockout
Mitochondria
Mitochondria - drug effects
multidisciplinary
Non-alcoholic Fatty Liver Disease - physiopathology
Observations
Oxidation
Oxidation-Reduction - drug effects
Phosphorylation
Physiological aspects
Physiology
Portal vein
Proteins
Pyruvate carboxylase
Pyruvic acid
Rodents
Science
Science (multidisciplinary)
Steatosis
Triglycerides
Veins & arteries
title Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucagon%20stimulates%20gluconeogenesis%20by%20INSP3R1-mediated%20hepatic%20lipolysis&rft.jtitle=Nature%20(London)&rft.au=Perry,%20Rachel%20J.&rft.date=2020-03-01&rft.volume=579&rft.issue=7798&rft.spage=279&rft.epage=283&rft.pages=279-283&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2074-6&rft_dat=%3Cgale_proqu%3EA660270486%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382073577&rft_id=info:pmid/32132708&rft_galeid=A660270486&rfr_iscdi=true