Energy Landscapes of a Pair of Adsorbed Peptides
The wide relevance of peptide adsorption in natural and synthetic contexts means it has attracted much attention. Molecular dynamics (MD) simulation has been widely used in these endeavors. Much of this has focused on single peptides due to the computational effort required to capture the rare event...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2020-03, Vol.124 (12), p.2401-2409 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2409 |
---|---|
container_issue | 12 |
container_start_page | 2401 |
container_title | The journal of physical chemistry. B |
container_volume | 124 |
creator | Ross-Naylor, James A Mijajlovic, Milan Biggs, Mark J |
description | The wide relevance of peptide adsorption in natural and synthetic contexts means it has attracted much attention. Molecular dynamics (MD) simulation has been widely used in these endeavors. Much of this has focused on single peptides due to the computational effort required to capture the rare events that characterize their adsorption. This focus is, however, of limited practical relevance as in reality, most systems of interest operate in the nondilute regime where peptides will interact with other adsorbed peptides. As an alternative to MD simulation, we have used energy landscape mapping (ELM) to investigate two met-enkephalin molecules adsorbed at a gas/graphite interface. Major conformations of the adsorbed peptides and the connecting transition states are elucidated along with the associated energy barriers and rates of exchange. The last of these makes clear that MD simulations are currently of limited use in probing the co-adsorption of two peptides, let alone more. The constant volume heat capacity as a function of temperature is also presented. Overall, this study represents a significant step toward characterizing peptide adsorption beyond the dilute limit. |
doi_str_mv | 10.1021/acs.jpcb.0c00859 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2371145372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371145372</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-271e1d72dfc605ceba0961c0860184700ffb83bd04f1340c83dbc78833dc1b8e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwM6GMDKTc2XHsjlVVPqRKdIDZ8idK1SbBbob-e1Ia2BhOd8PzvtI9hNwiTBEoPmqbppvWmilYAMlnZ2SMnELejzgf7hKhHJGrlDYAlFNZXpIRo0i55MWYwLL28fOQrXTtktWtT1kTMp2tdRWP19ylJhrvsrVv95Xz6ZpcBL1N_mbYE_LxtHxfvOSrt-fXxXyVaybkPqcCPTpBXbAlcOuNhlmJFmQJKAsBEIKRzDgoArICrGTOWCElY86ikZ5NyP2pt43NV-fTXu2qZP12q2vfdElRJhALzgTtUTihNjYpRR9UG6udjgeFoI6eVO9JHT2pwVMfuRvaO7Pz7i_wK6YHHk7AT7TpYt0_-3_fN4x5cco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371145372</pqid></control><display><type>article</type><title>Energy Landscapes of a Pair of Adsorbed Peptides</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Ross-Naylor, James A ; Mijajlovic, Milan ; Biggs, Mark J</creator><creatorcontrib>Ross-Naylor, James A ; Mijajlovic, Milan ; Biggs, Mark J</creatorcontrib><description>The wide relevance of peptide adsorption in natural and synthetic contexts means it has attracted much attention. Molecular dynamics (MD) simulation has been widely used in these endeavors. Much of this has focused on single peptides due to the computational effort required to capture the rare events that characterize their adsorption. This focus is, however, of limited practical relevance as in reality, most systems of interest operate in the nondilute regime where peptides will interact with other adsorbed peptides. As an alternative to MD simulation, we have used energy landscape mapping (ELM) to investigate two met-enkephalin molecules adsorbed at a gas/graphite interface. Major conformations of the adsorbed peptides and the connecting transition states are elucidated along with the associated energy barriers and rates of exchange. The last of these makes clear that MD simulations are currently of limited use in probing the co-adsorption of two peptides, let alone more. The constant volume heat capacity as a function of temperature is also presented. Overall, this study represents a significant step toward characterizing peptide adsorption beyond the dilute limit.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.0c00859</identifier><identifier>PMID: 32125854</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Graphite ; Molecular Conformation ; Molecular Dynamics Simulation ; Peptides</subject><ispartof>The journal of physical chemistry. B, 2020-03, Vol.124 (12), p.2401-2409</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-271e1d72dfc605ceba0961c0860184700ffb83bd04f1340c83dbc78833dc1b8e3</citedby><cites>FETCH-LOGICAL-a378t-271e1d72dfc605ceba0961c0860184700ffb83bd04f1340c83dbc78833dc1b8e3</cites><orcidid>0000-0003-2712-0507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.0c00859$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.0c00859$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32125854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross-Naylor, James A</creatorcontrib><creatorcontrib>Mijajlovic, Milan</creatorcontrib><creatorcontrib>Biggs, Mark J</creatorcontrib><title>Energy Landscapes of a Pair of Adsorbed Peptides</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The wide relevance of peptide adsorption in natural and synthetic contexts means it has attracted much attention. Molecular dynamics (MD) simulation has been widely used in these endeavors. Much of this has focused on single peptides due to the computational effort required to capture the rare events that characterize their adsorption. This focus is, however, of limited practical relevance as in reality, most systems of interest operate in the nondilute regime where peptides will interact with other adsorbed peptides. As an alternative to MD simulation, we have used energy landscape mapping (ELM) to investigate two met-enkephalin molecules adsorbed at a gas/graphite interface. Major conformations of the adsorbed peptides and the connecting transition states are elucidated along with the associated energy barriers and rates of exchange. The last of these makes clear that MD simulations are currently of limited use in probing the co-adsorption of two peptides, let alone more. The constant volume heat capacity as a function of temperature is also presented. Overall, this study represents a significant step toward characterizing peptide adsorption beyond the dilute limit.</description><subject>Adsorption</subject><subject>Graphite</subject><subject>Molecular Conformation</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EoqWwM6GMDKTc2XHsjlVVPqRKdIDZ8idK1SbBbob-e1Ia2BhOd8PzvtI9hNwiTBEoPmqbppvWmilYAMlnZ2SMnELejzgf7hKhHJGrlDYAlFNZXpIRo0i55MWYwLL28fOQrXTtktWtT1kTMp2tdRWP19ylJhrvsrVv95Xz6ZpcBL1N_mbYE_LxtHxfvOSrt-fXxXyVaybkPqcCPTpBXbAlcOuNhlmJFmQJKAsBEIKRzDgoArICrGTOWCElY86ikZ5NyP2pt43NV-fTXu2qZP12q2vfdElRJhALzgTtUTihNjYpRR9UG6udjgeFoI6eVO9JHT2pwVMfuRvaO7Pz7i_wK6YHHk7AT7TpYt0_-3_fN4x5cco</recordid><startdate>20200326</startdate><enddate>20200326</enddate><creator>Ross-Naylor, James A</creator><creator>Mijajlovic, Milan</creator><creator>Biggs, Mark J</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2712-0507</orcidid></search><sort><creationdate>20200326</creationdate><title>Energy Landscapes of a Pair of Adsorbed Peptides</title><author>Ross-Naylor, James A ; Mijajlovic, Milan ; Biggs, Mark J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-271e1d72dfc605ceba0961c0860184700ffb83bd04f1340c83dbc78833dc1b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Graphite</topic><topic>Molecular Conformation</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross-Naylor, James A</creatorcontrib><creatorcontrib>Mijajlovic, Milan</creatorcontrib><creatorcontrib>Biggs, Mark J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross-Naylor, James A</au><au>Mijajlovic, Milan</au><au>Biggs, Mark J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Landscapes of a Pair of Adsorbed Peptides</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2020-03-26</date><risdate>2020</risdate><volume>124</volume><issue>12</issue><spage>2401</spage><epage>2409</epage><pages>2401-2409</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The wide relevance of peptide adsorption in natural and synthetic contexts means it has attracted much attention. Molecular dynamics (MD) simulation has been widely used in these endeavors. Much of this has focused on single peptides due to the computational effort required to capture the rare events that characterize their adsorption. This focus is, however, of limited practical relevance as in reality, most systems of interest operate in the nondilute regime where peptides will interact with other adsorbed peptides. As an alternative to MD simulation, we have used energy landscape mapping (ELM) to investigate two met-enkephalin molecules adsorbed at a gas/graphite interface. Major conformations of the adsorbed peptides and the connecting transition states are elucidated along with the associated energy barriers and rates of exchange. The last of these makes clear that MD simulations are currently of limited use in probing the co-adsorption of two peptides, let alone more. The constant volume heat capacity as a function of temperature is also presented. Overall, this study represents a significant step toward characterizing peptide adsorption beyond the dilute limit.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32125854</pmid><doi>10.1021/acs.jpcb.0c00859</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2712-0507</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2020-03, Vol.124 (12), p.2401-2409 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_2371145372 |
source | MEDLINE; American Chemical Society Journals |
subjects | Adsorption Graphite Molecular Conformation Molecular Dynamics Simulation Peptides |
title | Energy Landscapes of a Pair of Adsorbed Peptides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Landscapes%20of%20a%20Pair%20of%20Adsorbed%20Peptides&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Ross-Naylor,%20James%20A&rft.date=2020-03-26&rft.volume=124&rft.issue=12&rft.spage=2401&rft.epage=2409&rft.pages=2401-2409&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.0c00859&rft_dat=%3Cproquest_cross%3E2371145372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371145372&rft_id=info:pmid/32125854&rfr_iscdi=true |