Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions

One-dimensionally (1D) hollow noble meal nanotubes are attracting continuous attention because of their huge potential applications in catalysis and electrocatalysis. Herein, we successfully synthesize hollow iridium nanotubes (Ir NTs) with the rough porous surface by the 1-hydroxyethylidene-1, 1-di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-03, Vol.12 (12), p.14064-14070
Hauptverfasser: Zhu, Jing-Yi, Xue, Qi, Xue, Yuan-Yuan, Ding, Yu, Li, Fu-Min, Jin, Pujun, Chen, Pei, Chen, Yu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14070
container_issue 12
container_start_page 14064
container_title ACS applied materials & interfaces
container_volume 12
creator Zhu, Jing-Yi
Xue, Qi
Xue, Yuan-Yuan
Ding, Yu
Li, Fu-Min
Jin, Pujun
Chen, Pei
Chen, Yu
description One-dimensionally (1D) hollow noble meal nanotubes are attracting continuous attention because of their huge potential applications in catalysis and electrocatalysis. Herein, we successfully synthesize hollow iridium nanotubes (Ir NTs) with the rough porous surface by the 1-hydroxyethylidene-1, 1-diphosphonic acid-induced self-template method under hydrothermal conditions and investigate their electrocatalytic performance for oxygen evolution (OER) and nitrate reduction reactions (NO3 –RR) in an acidic electrolyte. The unique 1D and porous structure endow Ir NTs with big surface areas, high conductivity, and optimal atom utilization efficiency. Consequently, Ir NTs exhibit significantly enhanced activity and durability for acidic OERs compared with commercial Ir nanocrystals (Ir c-NCs), which only require the overpotential of 245 mV to deliver the current density of 10 mA cm–2. Meanwhile, Ir NTs also show higher electrocatalytic activity for NO3 –RR than that of Ir c-NCs, such as a Faraday efficiency of 84.7% and yield rate of 921 μg h–1 mgcat –1 for ammonia generation, suggesting that Ir NTs are universally advanced Ir-based electrocatalysts.
doi_str_mv 10.1021/acsami.0c01937
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2371143358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371143358</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-8b674529b788d30c244fbe7ac467e99dc200fe33842cd7fa37f0f24b3b6f1b4c3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMobk6vHiVHETrz1bU96pg6GBuInkOSJqOjbWY-xP33duvczdP7HH7Pw8sPgFuMxhgR_CiUF001RgrhgmZnYIgLxpKcpOT8lBkbgCvvNwhNKEHpJRhQgkma43wI1nNXlVVs4FK0NkSpPRQePlcmtipUthU1nNVaBWeVCKLe-eChsQ6ufnZr3cLZt63jnoOiLeGyCk4EDd91GQ_tLolD8Nfgwoja65vjHYHPl9nH9C1ZrF7n06dFIihFIcnlJGMpKWSW5yVFqvvdSJ0JxSaZLopSEYSMpjRnRJWZETQzyBAmqZwYLJmiI3Df726d_YraB95UXum6Fq220XNCM4wZpWneoeMeVc5677ThW1c1wu04Rnwvl_dy-VFuV7g7bkfZ6PKE_9nsgIce6Ip8Y6Pr9Pn_1n4BG5iGBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371143358</pqid></control><display><type>article</type><title>Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions</title><source>ACS Publications</source><creator>Zhu, Jing-Yi ; Xue, Qi ; Xue, Yuan-Yuan ; Ding, Yu ; Li, Fu-Min ; Jin, Pujun ; Chen, Pei ; Chen, Yu</creator><creatorcontrib>Zhu, Jing-Yi ; Xue, Qi ; Xue, Yuan-Yuan ; Ding, Yu ; Li, Fu-Min ; Jin, Pujun ; Chen, Pei ; Chen, Yu</creatorcontrib><description>One-dimensionally (1D) hollow noble meal nanotubes are attracting continuous attention because of their huge potential applications in catalysis and electrocatalysis. Herein, we successfully synthesize hollow iridium nanotubes (Ir NTs) with the rough porous surface by the 1-hydroxyethylidene-1, 1-diphosphonic acid-induced self-template method under hydrothermal conditions and investigate their electrocatalytic performance for oxygen evolution (OER) and nitrate reduction reactions (NO3 –RR) in an acidic electrolyte. The unique 1D and porous structure endow Ir NTs with big surface areas, high conductivity, and optimal atom utilization efficiency. Consequently, Ir NTs exhibit significantly enhanced activity and durability for acidic OERs compared with commercial Ir nanocrystals (Ir c-NCs), which only require the overpotential of 245 mV to deliver the current density of 10 mA cm–2. Meanwhile, Ir NTs also show higher electrocatalytic activity for NO3 –RR than that of Ir c-NCs, such as a Faraday efficiency of 84.7% and yield rate of 921 μg h–1 mgcat –1 for ammonia generation, suggesting that Ir NTs are universally advanced Ir-based electrocatalysts.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c01937</identifier><identifier>PMID: 32125818</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-03, Vol.12 (12), p.14064-14070</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-8b674529b788d30c244fbe7ac467e99dc200fe33842cd7fa37f0f24b3b6f1b4c3</citedby><cites>FETCH-LOGICAL-a330t-8b674529b788d30c244fbe7ac467e99dc200fe33842cd7fa37f0f24b3b6f1b4c3</cites><orcidid>0000-0001-9545-6761 ; 0000-0002-3388-8929 ; 0000-0002-4317-3361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c01937$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c01937$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32125818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jing-Yi</creatorcontrib><creatorcontrib>Xue, Qi</creatorcontrib><creatorcontrib>Xue, Yuan-Yuan</creatorcontrib><creatorcontrib>Ding, Yu</creatorcontrib><creatorcontrib>Li, Fu-Min</creatorcontrib><creatorcontrib>Jin, Pujun</creatorcontrib><creatorcontrib>Chen, Pei</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><title>Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>One-dimensionally (1D) hollow noble meal nanotubes are attracting continuous attention because of their huge potential applications in catalysis and electrocatalysis. Herein, we successfully synthesize hollow iridium nanotubes (Ir NTs) with the rough porous surface by the 1-hydroxyethylidene-1, 1-diphosphonic acid-induced self-template method under hydrothermal conditions and investigate their electrocatalytic performance for oxygen evolution (OER) and nitrate reduction reactions (NO3 –RR) in an acidic electrolyte. The unique 1D and porous structure endow Ir NTs with big surface areas, high conductivity, and optimal atom utilization efficiency. Consequently, Ir NTs exhibit significantly enhanced activity and durability for acidic OERs compared with commercial Ir nanocrystals (Ir c-NCs), which only require the overpotential of 245 mV to deliver the current density of 10 mA cm–2. Meanwhile, Ir NTs also show higher electrocatalytic activity for NO3 –RR than that of Ir c-NCs, such as a Faraday efficiency of 84.7% and yield rate of 921 μg h–1 mgcat –1 for ammonia generation, suggesting that Ir NTs are universally advanced Ir-based electrocatalysts.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYxoMobk6vHiVHETrz1bU96pg6GBuInkOSJqOjbWY-xP33duvczdP7HH7Pw8sPgFuMxhgR_CiUF001RgrhgmZnYIgLxpKcpOT8lBkbgCvvNwhNKEHpJRhQgkma43wI1nNXlVVs4FK0NkSpPRQePlcmtipUthU1nNVaBWeVCKLe-eChsQ6ufnZr3cLZt63jnoOiLeGyCk4EDd91GQ_tLolD8Nfgwoja65vjHYHPl9nH9C1ZrF7n06dFIihFIcnlJGMpKWSW5yVFqvvdSJ0JxSaZLopSEYSMpjRnRJWZETQzyBAmqZwYLJmiI3Df726d_YraB95UXum6Fq220XNCM4wZpWneoeMeVc5677ThW1c1wu04Rnwvl_dy-VFuV7g7bkfZ6PKE_9nsgIce6Ip8Y6Pr9Pn_1n4BG5iGBw</recordid><startdate>20200325</startdate><enddate>20200325</enddate><creator>Zhu, Jing-Yi</creator><creator>Xue, Qi</creator><creator>Xue, Yuan-Yuan</creator><creator>Ding, Yu</creator><creator>Li, Fu-Min</creator><creator>Jin, Pujun</creator><creator>Chen, Pei</creator><creator>Chen, Yu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9545-6761</orcidid><orcidid>https://orcid.org/0000-0002-3388-8929</orcidid><orcidid>https://orcid.org/0000-0002-4317-3361</orcidid></search><sort><creationdate>20200325</creationdate><title>Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions</title><author>Zhu, Jing-Yi ; Xue, Qi ; Xue, Yuan-Yuan ; Ding, Yu ; Li, Fu-Min ; Jin, Pujun ; Chen, Pei ; Chen, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-8b674529b788d30c244fbe7ac467e99dc200fe33842cd7fa37f0f24b3b6f1b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jing-Yi</creatorcontrib><creatorcontrib>Xue, Qi</creatorcontrib><creatorcontrib>Xue, Yuan-Yuan</creatorcontrib><creatorcontrib>Ding, Yu</creatorcontrib><creatorcontrib>Li, Fu-Min</creatorcontrib><creatorcontrib>Jin, Pujun</creatorcontrib><creatorcontrib>Chen, Pei</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jing-Yi</au><au>Xue, Qi</au><au>Xue, Yuan-Yuan</au><au>Ding, Yu</au><au>Li, Fu-Min</au><au>Jin, Pujun</au><au>Chen, Pei</au><au>Chen, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-03-25</date><risdate>2020</risdate><volume>12</volume><issue>12</issue><spage>14064</spage><epage>14070</epage><pages>14064-14070</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>One-dimensionally (1D) hollow noble meal nanotubes are attracting continuous attention because of their huge potential applications in catalysis and electrocatalysis. Herein, we successfully synthesize hollow iridium nanotubes (Ir NTs) with the rough porous surface by the 1-hydroxyethylidene-1, 1-diphosphonic acid-induced self-template method under hydrothermal conditions and investigate their electrocatalytic performance for oxygen evolution (OER) and nitrate reduction reactions (NO3 –RR) in an acidic electrolyte. The unique 1D and porous structure endow Ir NTs with big surface areas, high conductivity, and optimal atom utilization efficiency. Consequently, Ir NTs exhibit significantly enhanced activity and durability for acidic OERs compared with commercial Ir nanocrystals (Ir c-NCs), which only require the overpotential of 245 mV to deliver the current density of 10 mA cm–2. Meanwhile, Ir NTs also show higher electrocatalytic activity for NO3 –RR than that of Ir c-NCs, such as a Faraday efficiency of 84.7% and yield rate of 921 μg h–1 mgcat –1 for ammonia generation, suggesting that Ir NTs are universally advanced Ir-based electrocatalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32125818</pmid><doi>10.1021/acsami.0c01937</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9545-6761</orcidid><orcidid>https://orcid.org/0000-0002-3388-8929</orcidid><orcidid>https://orcid.org/0000-0002-4317-3361</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-03, Vol.12 (12), p.14064-14070
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2371143358
source ACS Publications
title Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iridium%20Nanotubes%20as%20Bifunctional%20Electrocatalysts%20for%20Oxygen%20Evolution%20and%20Nitrate%20Reduction%20Reactions&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhu,%20Jing-Yi&rft.date=2020-03-25&rft.volume=12&rft.issue=12&rft.spage=14064&rft.epage=14070&rft.pages=14064-14070&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c01937&rft_dat=%3Cproquest_cross%3E2371143358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371143358&rft_id=info:pmid/32125818&rfr_iscdi=true