First-principle calculation of Chern number in gyrotropic photonic crystals

As an important figure of merit for characterizing the quantized collective behaviors of the wavefunction, Chern number is the topological invariant of quantum Hall insulators. Chern number also identifies the topological properties of the photonic topological insulators (PTIs), thus it is of crucia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-02, Vol.28 (4), p.4638-4649
Hauptverfasser: Zhao, Ran, Xie, Guo-Da, Chen, Menglin L N, Lan, Zhihao, Huang, Zhixiang, Sha, Wei E I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4649
container_issue 4
container_start_page 4638
container_title Optics express
container_volume 28
creator Zhao, Ran
Xie, Guo-Da
Chen, Menglin L N
Lan, Zhihao
Huang, Zhixiang
Sha, Wei E I
description As an important figure of merit for characterizing the quantized collective behaviors of the wavefunction, Chern number is the topological invariant of quantum Hall insulators. Chern number also identifies the topological properties of the photonic topological insulators (PTIs), thus it is of crucial importance in PTI design. In this paper, we develop a first principle computatioal method for the Chern number of 2D gyrotropic photonic crystals (PCs), starting from the Maxwell's equations. Firstly, we solve the Hermitian generalized eigenvalue equation reformulated from the Maxwell's equations by using the full-wave finite-difference frequency-domain (FDFD) method. Then the Chern number is obtained by calculating the integral of Berry curvature over the first Brillouin zone. Numerical examples of both transverse-electric (TE) and transverse-magnetic (TM) modes are demonstrated, where convergent Chern numbers can be obtained using rather coarse grids, thus validating the efficiency and accuracy of the proposed method.
doi_str_mv 10.1364/OE.380077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2370533934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370533934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-e2b3c26647d5daeeb3953ace89a712a62b324b8a0a818d2c33043b68046bc47d3</originalsourceid><addsrcrecordid>eNpNkDFPwzAUhC0EolAY-AMoIwwptp9rJyOqWkBU6gKzZTsuNUrsYCdD_z1GLYjpTnrfnfQOoRuCZwQ4e9gsZ1BhLMQJuiC4ZiXDlTj95yfoMqVPjAkTtThHE6CEEl6LC_S6cjENZR-dN65vbWFUa8ZWDS74ImyLxc5GX_ix0zYWzhcf-xiGGHpnin4XhuCzMXGfBtWmK3S2zWKvjzpF76vl2-K5XG-eXhaP69IAxUNpqQZDOWeimTfKWg31HJSxVa0EoYrnM2W6UlhVpGqoAcAMNK8w49rkEEzR3aG3j-FrtGmQnUvGtq3yNoxJUhB4DlADy-j9ATUxpBTtVuZPOxX3kmD5s53cLOVhu8zeHmtH3dnmj_wdC74BuLNpVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370533934</pqid></control><display><type>article</type><title>First-principle calculation of Chern number in gyrotropic photonic crystals</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, Ran ; Xie, Guo-Da ; Chen, Menglin L N ; Lan, Zhihao ; Huang, Zhixiang ; Sha, Wei E I</creator><creatorcontrib>Zhao, Ran ; Xie, Guo-Da ; Chen, Menglin L N ; Lan, Zhihao ; Huang, Zhixiang ; Sha, Wei E I</creatorcontrib><description>As an important figure of merit for characterizing the quantized collective behaviors of the wavefunction, Chern number is the topological invariant of quantum Hall insulators. Chern number also identifies the topological properties of the photonic topological insulators (PTIs), thus it is of crucial importance in PTI design. In this paper, we develop a first principle computatioal method for the Chern number of 2D gyrotropic photonic crystals (PCs), starting from the Maxwell's equations. Firstly, we solve the Hermitian generalized eigenvalue equation reformulated from the Maxwell's equations by using the full-wave finite-difference frequency-domain (FDFD) method. Then the Chern number is obtained by calculating the integral of Berry curvature over the first Brillouin zone. Numerical examples of both transverse-electric (TE) and transverse-magnetic (TM) modes are demonstrated, where convergent Chern numbers can be obtained using rather coarse grids, thus validating the efficiency and accuracy of the proposed method.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.380077</identifier><identifier>PMID: 32121697</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2020-02, Vol.28 (4), p.4638-4649</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-e2b3c26647d5daeeb3953ace89a712a62b324b8a0a818d2c33043b68046bc47d3</citedby><cites>FETCH-LOGICAL-c320t-e2b3c26647d5daeeb3953ace89a712a62b324b8a0a818d2c33043b68046bc47d3</cites><orcidid>0000-0001-8346-5556 ; 0000-0002-7431-8121 ; 0000-0003-0709-7397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32121697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Ran</creatorcontrib><creatorcontrib>Xie, Guo-Da</creatorcontrib><creatorcontrib>Chen, Menglin L N</creatorcontrib><creatorcontrib>Lan, Zhihao</creatorcontrib><creatorcontrib>Huang, Zhixiang</creatorcontrib><creatorcontrib>Sha, Wei E I</creatorcontrib><title>First-principle calculation of Chern number in gyrotropic photonic crystals</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>As an important figure of merit for characterizing the quantized collective behaviors of the wavefunction, Chern number is the topological invariant of quantum Hall insulators. Chern number also identifies the topological properties of the photonic topological insulators (PTIs), thus it is of crucial importance in PTI design. In this paper, we develop a first principle computatioal method for the Chern number of 2D gyrotropic photonic crystals (PCs), starting from the Maxwell's equations. Firstly, we solve the Hermitian generalized eigenvalue equation reformulated from the Maxwell's equations by using the full-wave finite-difference frequency-domain (FDFD) method. Then the Chern number is obtained by calculating the integral of Berry curvature over the first Brillouin zone. Numerical examples of both transverse-electric (TE) and transverse-magnetic (TM) modes are demonstrated, where convergent Chern numbers can be obtained using rather coarse grids, thus validating the efficiency and accuracy of the proposed method.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkDFPwzAUhC0EolAY-AMoIwwptp9rJyOqWkBU6gKzZTsuNUrsYCdD_z1GLYjpTnrfnfQOoRuCZwQ4e9gsZ1BhLMQJuiC4ZiXDlTj95yfoMqVPjAkTtThHE6CEEl6LC_S6cjENZR-dN65vbWFUa8ZWDS74ImyLxc5GX_ix0zYWzhcf-xiGGHpnin4XhuCzMXGfBtWmK3S2zWKvjzpF76vl2-K5XG-eXhaP69IAxUNpqQZDOWeimTfKWg31HJSxVa0EoYrnM2W6UlhVpGqoAcAMNK8w49rkEEzR3aG3j-FrtGmQnUvGtq3yNoxJUhB4DlADy-j9ATUxpBTtVuZPOxX3kmD5s53cLOVhu8zeHmtH3dnmj_wdC74BuLNpVQ</recordid><startdate>20200217</startdate><enddate>20200217</enddate><creator>Zhao, Ran</creator><creator>Xie, Guo-Da</creator><creator>Chen, Menglin L N</creator><creator>Lan, Zhihao</creator><creator>Huang, Zhixiang</creator><creator>Sha, Wei E I</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8346-5556</orcidid><orcidid>https://orcid.org/0000-0002-7431-8121</orcidid><orcidid>https://orcid.org/0000-0003-0709-7397</orcidid></search><sort><creationdate>20200217</creationdate><title>First-principle calculation of Chern number in gyrotropic photonic crystals</title><author>Zhao, Ran ; Xie, Guo-Da ; Chen, Menglin L N ; Lan, Zhihao ; Huang, Zhixiang ; Sha, Wei E I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-e2b3c26647d5daeeb3953ace89a712a62b324b8a0a818d2c33043b68046bc47d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ran</creatorcontrib><creatorcontrib>Xie, Guo-Da</creatorcontrib><creatorcontrib>Chen, Menglin L N</creatorcontrib><creatorcontrib>Lan, Zhihao</creatorcontrib><creatorcontrib>Huang, Zhixiang</creatorcontrib><creatorcontrib>Sha, Wei E I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ran</au><au>Xie, Guo-Da</au><au>Chen, Menglin L N</au><au>Lan, Zhihao</au><au>Huang, Zhixiang</au><au>Sha, Wei E I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principle calculation of Chern number in gyrotropic photonic crystals</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2020-02-17</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>4638</spage><epage>4649</epage><pages>4638-4649</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>As an important figure of merit for characterizing the quantized collective behaviors of the wavefunction, Chern number is the topological invariant of quantum Hall insulators. Chern number also identifies the topological properties of the photonic topological insulators (PTIs), thus it is of crucial importance in PTI design. In this paper, we develop a first principle computatioal method for the Chern number of 2D gyrotropic photonic crystals (PCs), starting from the Maxwell's equations. Firstly, we solve the Hermitian generalized eigenvalue equation reformulated from the Maxwell's equations by using the full-wave finite-difference frequency-domain (FDFD) method. Then the Chern number is obtained by calculating the integral of Berry curvature over the first Brillouin zone. Numerical examples of both transverse-electric (TE) and transverse-magnetic (TM) modes are demonstrated, where convergent Chern numbers can be obtained using rather coarse grids, thus validating the efficiency and accuracy of the proposed method.</abstract><cop>United States</cop><pmid>32121697</pmid><doi>10.1364/OE.380077</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8346-5556</orcidid><orcidid>https://orcid.org/0000-0002-7431-8121</orcidid><orcidid>https://orcid.org/0000-0003-0709-7397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2020-02, Vol.28 (4), p.4638-4649
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2370533934
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title First-principle calculation of Chern number in gyrotropic photonic crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principle%20calculation%20of%20Chern%20number%20in%20gyrotropic%20photonic%20crystals&rft.jtitle=Optics%20express&rft.au=Zhao,%20Ran&rft.date=2020-02-17&rft.volume=28&rft.issue=4&rft.spage=4638&rft.epage=4649&rft.pages=4638-4649&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.380077&rft_dat=%3Cproquest_cross%3E2370533934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2370533934&rft_id=info:pmid/32121697&rfr_iscdi=true