First-principle calculation of Chern number in gyrotropic photonic crystals
As an important figure of merit for characterizing the quantized collective behaviors of the wavefunction, Chern number is the topological invariant of quantum Hall insulators. Chern number also identifies the topological properties of the photonic topological insulators (PTIs), thus it is of crucia...
Gespeichert in:
Veröffentlicht in: | Optics express 2020-02, Vol.28 (4), p.4638-4649 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4649 |
---|---|
container_issue | 4 |
container_start_page | 4638 |
container_title | Optics express |
container_volume | 28 |
creator | Zhao, Ran Xie, Guo-Da Chen, Menglin L N Lan, Zhihao Huang, Zhixiang Sha, Wei E I |
description | As an important figure of merit for characterizing the quantized collective behaviors of the wavefunction, Chern number is the topological invariant of quantum Hall insulators. Chern number also identifies the topological properties of the photonic topological insulators (PTIs), thus it is of crucial importance in PTI design. In this paper, we develop a first principle computatioal method for the Chern number of 2D gyrotropic photonic crystals (PCs), starting from the Maxwell's equations. Firstly, we solve the Hermitian generalized eigenvalue equation reformulated from the Maxwell's equations by using the full-wave finite-difference frequency-domain (FDFD) method. Then the Chern number is obtained by calculating the integral of Berry curvature over the first Brillouin zone. Numerical examples of both transverse-electric (TE) and transverse-magnetic (TM) modes are demonstrated, where convergent Chern numbers can be obtained using rather coarse grids, thus validating the efficiency and accuracy of the proposed method. |
doi_str_mv | 10.1364/OE.380077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2370533934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370533934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-e2b3c26647d5daeeb3953ace89a712a62b324b8a0a818d2c33043b68046bc47d3</originalsourceid><addsrcrecordid>eNpNkDFPwzAUhC0EolAY-AMoIwwptp9rJyOqWkBU6gKzZTsuNUrsYCdD_z1GLYjpTnrfnfQOoRuCZwQ4e9gsZ1BhLMQJuiC4ZiXDlTj95yfoMqVPjAkTtThHE6CEEl6LC_S6cjENZR-dN65vbWFUa8ZWDS74ImyLxc5GX_ix0zYWzhcf-xiGGHpnin4XhuCzMXGfBtWmK3S2zWKvjzpF76vl2-K5XG-eXhaP69IAxUNpqQZDOWeimTfKWg31HJSxVa0EoYrnM2W6UlhVpGqoAcAMNK8w49rkEEzR3aG3j-FrtGmQnUvGtq3yNoxJUhB4DlADy-j9ATUxpBTtVuZPOxX3kmD5s53cLOVhu8zeHmtH3dnmj_wdC74BuLNpVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370533934</pqid></control><display><type>article</type><title>First-principle calculation of Chern number in gyrotropic photonic crystals</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, Ran ; Xie, Guo-Da ; Chen, Menglin L N ; Lan, Zhihao ; Huang, Zhixiang ; Sha, Wei E I</creator><creatorcontrib>Zhao, Ran ; Xie, Guo-Da ; Chen, Menglin L N ; Lan, Zhihao ; Huang, Zhixiang ; Sha, Wei E I</creatorcontrib><description>As an important figure of merit for characterizing the quantized collective behaviors of the wavefunction, Chern number is the topological invariant of quantum Hall insulators. Chern number also identifies the topological properties of the photonic topological insulators (PTIs), thus it is of crucial importance in PTI design. In this paper, we develop a first principle computatioal method for the Chern number of 2D gyrotropic photonic crystals (PCs), starting from the Maxwell's equations. Firstly, we solve the Hermitian generalized eigenvalue equation reformulated from the Maxwell's equations by using the full-wave finite-difference frequency-domain (FDFD) method. Then the Chern number is obtained by calculating the integral of Berry curvature over the first Brillouin zone. Numerical examples of both transverse-electric (TE) and transverse-magnetic (TM) modes are demonstrated, where convergent Chern numbers can be obtained using rather coarse grids, thus validating the efficiency and accuracy of the proposed method.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.380077</identifier><identifier>PMID: 32121697</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2020-02, Vol.28 (4), p.4638-4649</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-e2b3c26647d5daeeb3953ace89a712a62b324b8a0a818d2c33043b68046bc47d3</citedby><cites>FETCH-LOGICAL-c320t-e2b3c26647d5daeeb3953ace89a712a62b324b8a0a818d2c33043b68046bc47d3</cites><orcidid>0000-0001-8346-5556 ; 0000-0002-7431-8121 ; 0000-0003-0709-7397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32121697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Ran</creatorcontrib><creatorcontrib>Xie, Guo-Da</creatorcontrib><creatorcontrib>Chen, Menglin L N</creatorcontrib><creatorcontrib>Lan, Zhihao</creatorcontrib><creatorcontrib>Huang, Zhixiang</creatorcontrib><creatorcontrib>Sha, Wei E I</creatorcontrib><title>First-principle calculation of Chern number in gyrotropic photonic crystals</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>As an important figure of merit for characterizing the quantized collective behaviors of the wavefunction, Chern number is the topological invariant of quantum Hall insulators. Chern number also identifies the topological properties of the photonic topological insulators (PTIs), thus it is of crucial importance in PTI design. In this paper, we develop a first principle computatioal method for the Chern number of 2D gyrotropic photonic crystals (PCs), starting from the Maxwell's equations. Firstly, we solve the Hermitian generalized eigenvalue equation reformulated from the Maxwell's equations by using the full-wave finite-difference frequency-domain (FDFD) method. Then the Chern number is obtained by calculating the integral of Berry curvature over the first Brillouin zone. Numerical examples of both transverse-electric (TE) and transverse-magnetic (TM) modes are demonstrated, where convergent Chern numbers can be obtained using rather coarse grids, thus validating the efficiency and accuracy of the proposed method.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkDFPwzAUhC0EolAY-AMoIwwptp9rJyOqWkBU6gKzZTsuNUrsYCdD_z1GLYjpTnrfnfQOoRuCZwQ4e9gsZ1BhLMQJuiC4ZiXDlTj95yfoMqVPjAkTtThHE6CEEl6LC_S6cjENZR-dN65vbWFUa8ZWDS74ImyLxc5GX_ix0zYWzhcf-xiGGHpnin4XhuCzMXGfBtWmK3S2zWKvjzpF76vl2-K5XG-eXhaP69IAxUNpqQZDOWeimTfKWg31HJSxVa0EoYrnM2W6UlhVpGqoAcAMNK8w49rkEEzR3aG3j-FrtGmQnUvGtq3yNoxJUhB4DlADy-j9ATUxpBTtVuZPOxX3kmD5s53cLOVhu8zeHmtH3dnmj_wdC74BuLNpVQ</recordid><startdate>20200217</startdate><enddate>20200217</enddate><creator>Zhao, Ran</creator><creator>Xie, Guo-Da</creator><creator>Chen, Menglin L N</creator><creator>Lan, Zhihao</creator><creator>Huang, Zhixiang</creator><creator>Sha, Wei E I</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8346-5556</orcidid><orcidid>https://orcid.org/0000-0002-7431-8121</orcidid><orcidid>https://orcid.org/0000-0003-0709-7397</orcidid></search><sort><creationdate>20200217</creationdate><title>First-principle calculation of Chern number in gyrotropic photonic crystals</title><author>Zhao, Ran ; Xie, Guo-Da ; Chen, Menglin L N ; Lan, Zhihao ; Huang, Zhixiang ; Sha, Wei E I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-e2b3c26647d5daeeb3953ace89a712a62b324b8a0a818d2c33043b68046bc47d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ran</creatorcontrib><creatorcontrib>Xie, Guo-Da</creatorcontrib><creatorcontrib>Chen, Menglin L N</creatorcontrib><creatorcontrib>Lan, Zhihao</creatorcontrib><creatorcontrib>Huang, Zhixiang</creatorcontrib><creatorcontrib>Sha, Wei E I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ran</au><au>Xie, Guo-Da</au><au>Chen, Menglin L N</au><au>Lan, Zhihao</au><au>Huang, Zhixiang</au><au>Sha, Wei E I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principle calculation of Chern number in gyrotropic photonic crystals</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2020-02-17</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>4638</spage><epage>4649</epage><pages>4638-4649</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>As an important figure of merit for characterizing the quantized collective behaviors of the wavefunction, Chern number is the topological invariant of quantum Hall insulators. Chern number also identifies the topological properties of the photonic topological insulators (PTIs), thus it is of crucial importance in PTI design. In this paper, we develop a first principle computatioal method for the Chern number of 2D gyrotropic photonic crystals (PCs), starting from the Maxwell's equations. Firstly, we solve the Hermitian generalized eigenvalue equation reformulated from the Maxwell's equations by using the full-wave finite-difference frequency-domain (FDFD) method. Then the Chern number is obtained by calculating the integral of Berry curvature over the first Brillouin zone. Numerical examples of both transverse-electric (TE) and transverse-magnetic (TM) modes are demonstrated, where convergent Chern numbers can be obtained using rather coarse grids, thus validating the efficiency and accuracy of the proposed method.</abstract><cop>United States</cop><pmid>32121697</pmid><doi>10.1364/OE.380077</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8346-5556</orcidid><orcidid>https://orcid.org/0000-0002-7431-8121</orcidid><orcidid>https://orcid.org/0000-0003-0709-7397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2020-02, Vol.28 (4), p.4638-4649 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2370533934 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
title | First-principle calculation of Chern number in gyrotropic photonic crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principle%20calculation%20of%20Chern%20number%20in%20gyrotropic%20photonic%20crystals&rft.jtitle=Optics%20express&rft.au=Zhao,%20Ran&rft.date=2020-02-17&rft.volume=28&rft.issue=4&rft.spage=4638&rft.epage=4649&rft.pages=4638-4649&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.380077&rft_dat=%3Cproquest_cross%3E2370533934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2370533934&rft_id=info:pmid/32121697&rfr_iscdi=true |