Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial
Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffold...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2020-02, Vol.10 (3), p.415, Article 415 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 415 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 10 |
creator | Tonellato, Marika Piccione, Monica Gasparotto, Matteo Bellet, Pietro Tibaudo, Lucia Vicentini, Nicola Bergantino, Elisabetta Menna, Enzo Vitiello, Libero Di Liddo, Rosa Filippini, Francesco |
description | Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffolds with poly-L-lactic acid (PLLA) matrix and three different p-methoxyphenyl functionalized carbon nanofillers, namely, carbon nanotubes (CNTs), carbon nanohorns (CNHs), and reduced graphene oxide (RGO), dispersed at varying concentrations. qRT-PCR analysis of the modulation of neuronal markers in human circulating multipotent cells cultured on nanocomposite scaffolds showed high variability in their expression patterns depending on the scaffolds' inhomogeneities. Local stimuli variation could result in a multi- to oligopotency shift and commitment towards multiple cell lineages, which was assessed by the qRT-PCR profiling of markers for neural, adipogenic, and myogenic cell lineages. Less conductive scaffolds, i.e., bare poly-L-lactic acid (PLLA)-, CNH-, and RGO-based nanocomposites, appeared to boost the expression of myogenic-lineage marker genes. Moreover, scaffolds are much more effective on early commitment than in subsequent differentiation. This work suggests that biomimetic PLLA carbon-nanomaterial (PLLA-CNM) scaffolds combined with multipotent autologous cells can represent a powerful tool in the regenerative medicine of multiple tissue types, opening the route to next analyses with specific and standardized scaffold features. |
doi_str_mv | 10.3390/nano10030415 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2370506473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_081a31c2b9f14983897b1a80a9c270fa</doaj_id><sourcerecordid>2370506473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-813508aed6a391a4090728fc485d53297004eba9bbfad63c4db6752387f5933f3</originalsourceid><addsrcrecordid>eNqNkk2PFCEQhjtG427WvXk2HE20FRqYhovJbkfdScaPZPXcqaZhZEPDCLRmfpd_UGZmncze5EJRPLxVRVVVPSf4DaUSv_XgA8GYYkb4o-q8wa2smZTk8Yl9Vl2mdIfLkoQKTp9WZ7QhDZaCnVd_ujBNNk_aZxQMuppzcGEd5oRu5gk8-jS7bDch7-5vs55Qp51LKHh0bcNkJ52tQl-D29aregVqd7pSdqyvIekR3SowJrgxoWUqz2Pwa7dFS2_crL0qwLDduWeV56gR-BF1ofh9jpBtiVEy6iAOxfpcCp0g62jBPaueGHBJX97vF9X3D--_dTf16svHZXe1qhXjONeCUI4F6HEBVBJgWOK2EUYxwUdOG9lizPQAchgMjAuq2DgsWt5Q0RouKTX0oloedMcAd_0m2gnitg9g-70jxHUPsVTsdI8FAUpUM0hDmBRUyHYgIDBI1bTYQNF6d9DazMOkx0ON7oHowxtvf_Tr8KtvCW8E5UXg5b1ADD9nnXI_2aRKM8Dr0q6-oS3meMFaWtDXB1TFkFLU5hiG4H43Nv3p2BT8xWlqR_jfkBTg1QH4rYdgkrK73h2xMle8WZTPZcXay4n_pzub953uwuwz_QstFuFx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370506473</pqid></control><display><type>article</type><title>Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Tonellato, Marika ; Piccione, Monica ; Gasparotto, Matteo ; Bellet, Pietro ; Tibaudo, Lucia ; Vicentini, Nicola ; Bergantino, Elisabetta ; Menna, Enzo ; Vitiello, Libero ; Di Liddo, Rosa ; Filippini, Francesco</creator><creatorcontrib>Tonellato, Marika ; Piccione, Monica ; Gasparotto, Matteo ; Bellet, Pietro ; Tibaudo, Lucia ; Vicentini, Nicola ; Bergantino, Elisabetta ; Menna, Enzo ; Vitiello, Libero ; Di Liddo, Rosa ; Filippini, Francesco</creatorcontrib><description>Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffolds with poly-L-lactic acid (PLLA) matrix and three different p-methoxyphenyl functionalized carbon nanofillers, namely, carbon nanotubes (CNTs), carbon nanohorns (CNHs), and reduced graphene oxide (RGO), dispersed at varying concentrations. qRT-PCR analysis of the modulation of neuronal markers in human circulating multipotent cells cultured on nanocomposite scaffolds showed high variability in their expression patterns depending on the scaffolds' inhomogeneities. Local stimuli variation could result in a multi- to oligopotency shift and commitment towards multiple cell lineages, which was assessed by the qRT-PCR profiling of markers for neural, adipogenic, and myogenic cell lineages. Less conductive scaffolds, i.e., bare poly-L-lactic acid (PLLA)-, CNH-, and RGO-based nanocomposites, appeared to boost the expression of myogenic-lineage marker genes. Moreover, scaffolds are much more effective on early commitment than in subsequent differentiation. This work suggests that biomimetic PLLA carbon-nanomaterial (PLLA-CNM) scaffolds combined with multipotent autologous cells can represent a powerful tool in the regenerative medicine of multiple tissue types, opening the route to next analyses with specific and standardized scaffold features.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10030415</identifier><identifier>PMID: 32120984</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>biomimetic nanomaterials ; carbon nanohorns ; carbon nanostructures ; carbon nanotubes ; Chemistry ; Chemistry, Multidisciplinary ; graphene ; human circulating multipotent cells ; Materials Science ; Materials Science, Multidisciplinary ; myod1 ; myogenic commitment ; Nanoscience & Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; plla-based scaffolds ; Science & Technology ; Science & Technology - Other Topics ; Technology</subject><ispartof>Nanomaterials (Basel, Switzerland), 2020-02, Vol.10 (3), p.415, Article 415</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526090400015</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c450t-813508aed6a391a4090728fc485d53297004eba9bbfad63c4db6752387f5933f3</citedby><cites>FETCH-LOGICAL-c450t-813508aed6a391a4090728fc485d53297004eba9bbfad63c4db6752387f5933f3</cites><orcidid>0000-0002-8028-0676 ; 0000-0003-4933-2578 ; 0000-0001-8402-7136 ; 0000-0002-9448-4776 ; 0000-0001-5456-1960 ; 0000-0003-0017-0838 ; 0000-0001-5672-0726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152835/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2112,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32120984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tonellato, Marika</creatorcontrib><creatorcontrib>Piccione, Monica</creatorcontrib><creatorcontrib>Gasparotto, Matteo</creatorcontrib><creatorcontrib>Bellet, Pietro</creatorcontrib><creatorcontrib>Tibaudo, Lucia</creatorcontrib><creatorcontrib>Vicentini, Nicola</creatorcontrib><creatorcontrib>Bergantino, Elisabetta</creatorcontrib><creatorcontrib>Menna, Enzo</creatorcontrib><creatorcontrib>Vitiello, Libero</creatorcontrib><creatorcontrib>Di Liddo, Rosa</creatorcontrib><creatorcontrib>Filippini, Francesco</creatorcontrib><title>Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>NANOMATERIALS-BASEL</addtitle><addtitle>Nanomaterials (Basel)</addtitle><description>Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffolds with poly-L-lactic acid (PLLA) matrix and three different p-methoxyphenyl functionalized carbon nanofillers, namely, carbon nanotubes (CNTs), carbon nanohorns (CNHs), and reduced graphene oxide (RGO), dispersed at varying concentrations. qRT-PCR analysis of the modulation of neuronal markers in human circulating multipotent cells cultured on nanocomposite scaffolds showed high variability in their expression patterns depending on the scaffolds' inhomogeneities. Local stimuli variation could result in a multi- to oligopotency shift and commitment towards multiple cell lineages, which was assessed by the qRT-PCR profiling of markers for neural, adipogenic, and myogenic cell lineages. Less conductive scaffolds, i.e., bare poly-L-lactic acid (PLLA)-, CNH-, and RGO-based nanocomposites, appeared to boost the expression of myogenic-lineage marker genes. Moreover, scaffolds are much more effective on early commitment than in subsequent differentiation. This work suggests that biomimetic PLLA carbon-nanomaterial (PLLA-CNM) scaffolds combined with multipotent autologous cells can represent a powerful tool in the regenerative medicine of multiple tissue types, opening the route to next analyses with specific and standardized scaffold features.</description><subject>biomimetic nanomaterials</subject><subject>carbon nanohorns</subject><subject>carbon nanostructures</subject><subject>carbon nanotubes</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>graphene</subject><subject>human circulating multipotent cells</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>myod1</subject><subject>myogenic commitment</subject><subject>Nanoscience & Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>plla-based scaffolds</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk2PFCEQhjtG427WvXk2HE20FRqYhovJbkfdScaPZPXcqaZhZEPDCLRmfpd_UGZmncze5EJRPLxVRVVVPSf4DaUSv_XgA8GYYkb4o-q8wa2smZTk8Yl9Vl2mdIfLkoQKTp9WZ7QhDZaCnVd_ujBNNk_aZxQMuppzcGEd5oRu5gk8-jS7bDch7-5vs55Qp51LKHh0bcNkJ52tQl-D29aregVqd7pSdqyvIekR3SowJrgxoWUqz2Pwa7dFS2_crL0qwLDduWeV56gR-BF1ofh9jpBtiVEy6iAOxfpcCp0g62jBPaueGHBJX97vF9X3D--_dTf16svHZXe1qhXjONeCUI4F6HEBVBJgWOK2EUYxwUdOG9lizPQAchgMjAuq2DgsWt5Q0RouKTX0oloedMcAd_0m2gnitg9g-70jxHUPsVTsdI8FAUpUM0hDmBRUyHYgIDBI1bTYQNF6d9DazMOkx0ON7oHowxtvf_Tr8KtvCW8E5UXg5b1ADD9nnXI_2aRKM8Dr0q6-oS3meMFaWtDXB1TFkFLU5hiG4H43Nv3p2BT8xWlqR_jfkBTg1QH4rYdgkrK73h2xMle8WZTPZcXay4n_pzub953uwuwz_QstFuFx</recordid><startdate>20200227</startdate><enddate>20200227</enddate><creator>Tonellato, Marika</creator><creator>Piccione, Monica</creator><creator>Gasparotto, Matteo</creator><creator>Bellet, Pietro</creator><creator>Tibaudo, Lucia</creator><creator>Vicentini, Nicola</creator><creator>Bergantino, Elisabetta</creator><creator>Menna, Enzo</creator><creator>Vitiello, Libero</creator><creator>Di Liddo, Rosa</creator><creator>Filippini, Francesco</creator><general>Mdpi</general><general>MDPI</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8028-0676</orcidid><orcidid>https://orcid.org/0000-0003-4933-2578</orcidid><orcidid>https://orcid.org/0000-0001-8402-7136</orcidid><orcidid>https://orcid.org/0000-0002-9448-4776</orcidid><orcidid>https://orcid.org/0000-0001-5456-1960</orcidid><orcidid>https://orcid.org/0000-0003-0017-0838</orcidid><orcidid>https://orcid.org/0000-0001-5672-0726</orcidid></search><sort><creationdate>20200227</creationdate><title>Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial</title><author>Tonellato, Marika ; Piccione, Monica ; Gasparotto, Matteo ; Bellet, Pietro ; Tibaudo, Lucia ; Vicentini, Nicola ; Bergantino, Elisabetta ; Menna, Enzo ; Vitiello, Libero ; Di Liddo, Rosa ; Filippini, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-813508aed6a391a4090728fc485d53297004eba9bbfad63c4db6752387f5933f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>biomimetic nanomaterials</topic><topic>carbon nanohorns</topic><topic>carbon nanostructures</topic><topic>carbon nanotubes</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>graphene</topic><topic>human circulating multipotent cells</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>myod1</topic><topic>myogenic commitment</topic><topic>Nanoscience & Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>plla-based scaffolds</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tonellato, Marika</creatorcontrib><creatorcontrib>Piccione, Monica</creatorcontrib><creatorcontrib>Gasparotto, Matteo</creatorcontrib><creatorcontrib>Bellet, Pietro</creatorcontrib><creatorcontrib>Tibaudo, Lucia</creatorcontrib><creatorcontrib>Vicentini, Nicola</creatorcontrib><creatorcontrib>Bergantino, Elisabetta</creatorcontrib><creatorcontrib>Menna, Enzo</creatorcontrib><creatorcontrib>Vitiello, Libero</creatorcontrib><creatorcontrib>Di Liddo, Rosa</creatorcontrib><creatorcontrib>Filippini, Francesco</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tonellato, Marika</au><au>Piccione, Monica</au><au>Gasparotto, Matteo</au><au>Bellet, Pietro</au><au>Tibaudo, Lucia</au><au>Vicentini, Nicola</au><au>Bergantino, Elisabetta</au><au>Menna, Enzo</au><au>Vitiello, Libero</au><au>Di Liddo, Rosa</au><au>Filippini, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><stitle>NANOMATERIALS-BASEL</stitle><addtitle>Nanomaterials (Basel)</addtitle><date>2020-02-27</date><risdate>2020</risdate><volume>10</volume><issue>3</issue><spage>415</spage><pages>415-</pages><artnum>415</artnum><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffolds with poly-L-lactic acid (PLLA) matrix and three different p-methoxyphenyl functionalized carbon nanofillers, namely, carbon nanotubes (CNTs), carbon nanohorns (CNHs), and reduced graphene oxide (RGO), dispersed at varying concentrations. qRT-PCR analysis of the modulation of neuronal markers in human circulating multipotent cells cultured on nanocomposite scaffolds showed high variability in their expression patterns depending on the scaffolds' inhomogeneities. Local stimuli variation could result in a multi- to oligopotency shift and commitment towards multiple cell lineages, which was assessed by the qRT-PCR profiling of markers for neural, adipogenic, and myogenic cell lineages. Less conductive scaffolds, i.e., bare poly-L-lactic acid (PLLA)-, CNH-, and RGO-based nanocomposites, appeared to boost the expression of myogenic-lineage marker genes. Moreover, scaffolds are much more effective on early commitment than in subsequent differentiation. This work suggests that biomimetic PLLA carbon-nanomaterial (PLLA-CNM) scaffolds combined with multipotent autologous cells can represent a powerful tool in the regenerative medicine of multiple tissue types, opening the route to next analyses with specific and standardized scaffold features.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32120984</pmid><doi>10.3390/nano10030415</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8028-0676</orcidid><orcidid>https://orcid.org/0000-0003-4933-2578</orcidid><orcidid>https://orcid.org/0000-0001-8402-7136</orcidid><orcidid>https://orcid.org/0000-0002-9448-4776</orcidid><orcidid>https://orcid.org/0000-0001-5456-1960</orcidid><orcidid>https://orcid.org/0000-0003-0017-0838</orcidid><orcidid>https://orcid.org/0000-0001-5672-0726</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2020-02, Vol.10 (3), p.415, Article 415 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_proquest_miscellaneous_2370506473 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | biomimetic nanomaterials carbon nanohorns carbon nanostructures carbon nanotubes Chemistry Chemistry, Multidisciplinary graphene human circulating multipotent cells Materials Science Materials Science, Multidisciplinary myod1 myogenic commitment Nanoscience & Nanotechnology Physical Sciences Physics Physics, Applied plla-based scaffolds Science & Technology Science & Technology - Other Topics Technology |
title | Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commitment%20of%20Autologous%20Human%20Multipotent%20Stem%20Cells%20on%20Biomimetic%20Poly-L-Lactic%20Acid-Based%20Scaffolds%20Is%20Strongly%20Influenced%20by%20Structure%20and%20Concentration%20of%20Carbon%20Nanomaterial&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Tonellato,%20Marika&rft.date=2020-02-27&rft.volume=10&rft.issue=3&rft.spage=415&rft.pages=415-&rft.artnum=415&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10030415&rft_dat=%3Cproquest_doaj_%3E2370506473%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2370506473&rft_id=info:pmid/32120984&rft_doaj_id=oai_doaj_org_article_081a31c2b9f14983897b1a80a9c270fa&rfr_iscdi=true |