Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial

Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-02, Vol.10 (3), p.415, Article 415
Hauptverfasser: Tonellato, Marika, Piccione, Monica, Gasparotto, Matteo, Bellet, Pietro, Tibaudo, Lucia, Vicentini, Nicola, Bergantino, Elisabetta, Menna, Enzo, Vitiello, Libero, Di Liddo, Rosa, Filippini, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 415
container_title Nanomaterials (Basel, Switzerland)
container_volume 10
creator Tonellato, Marika
Piccione, Monica
Gasparotto, Matteo
Bellet, Pietro
Tibaudo, Lucia
Vicentini, Nicola
Bergantino, Elisabetta
Menna, Enzo
Vitiello, Libero
Di Liddo, Rosa
Filippini, Francesco
description Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffolds with poly-L-lactic acid (PLLA) matrix and three different p-methoxyphenyl functionalized carbon nanofillers, namely, carbon nanotubes (CNTs), carbon nanohorns (CNHs), and reduced graphene oxide (RGO), dispersed at varying concentrations. qRT-PCR analysis of the modulation of neuronal markers in human circulating multipotent cells cultured on nanocomposite scaffolds showed high variability in their expression patterns depending on the scaffolds' inhomogeneities. Local stimuli variation could result in a multi- to oligopotency shift and commitment towards multiple cell lineages, which was assessed by the qRT-PCR profiling of markers for neural, adipogenic, and myogenic cell lineages. Less conductive scaffolds, i.e., bare poly-L-lactic acid (PLLA)-, CNH-, and RGO-based nanocomposites, appeared to boost the expression of myogenic-lineage marker genes. Moreover, scaffolds are much more effective on early commitment than in subsequent differentiation. This work suggests that biomimetic PLLA carbon-nanomaterial (PLLA-CNM) scaffolds combined with multipotent autologous cells can represent a powerful tool in the regenerative medicine of multiple tissue types, opening the route to next analyses with specific and standardized scaffold features.
doi_str_mv 10.3390/nano10030415
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2370506473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_081a31c2b9f14983897b1a80a9c270fa</doaj_id><sourcerecordid>2370506473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-813508aed6a391a4090728fc485d53297004eba9bbfad63c4db6752387f5933f3</originalsourceid><addsrcrecordid>eNqNkk2PFCEQhjtG427WvXk2HE20FRqYhovJbkfdScaPZPXcqaZhZEPDCLRmfpd_UGZmncze5EJRPLxVRVVVPSf4DaUSv_XgA8GYYkb4o-q8wa2smZTk8Yl9Vl2mdIfLkoQKTp9WZ7QhDZaCnVd_ujBNNk_aZxQMuppzcGEd5oRu5gk8-jS7bDch7-5vs55Qp51LKHh0bcNkJ52tQl-D29aregVqd7pSdqyvIekR3SowJrgxoWUqz2Pwa7dFS2_crL0qwLDduWeV56gR-BF1ofh9jpBtiVEy6iAOxfpcCp0g62jBPaueGHBJX97vF9X3D--_dTf16svHZXe1qhXjONeCUI4F6HEBVBJgWOK2EUYxwUdOG9lizPQAchgMjAuq2DgsWt5Q0RouKTX0oloedMcAd_0m2gnitg9g-70jxHUPsVTsdI8FAUpUM0hDmBRUyHYgIDBI1bTYQNF6d9DazMOkx0ON7oHowxtvf_Tr8KtvCW8E5UXg5b1ADD9nnXI_2aRKM8Dr0q6-oS3meMFaWtDXB1TFkFLU5hiG4H43Nv3p2BT8xWlqR_jfkBTg1QH4rYdgkrK73h2xMle8WZTPZcXay4n_pzub953uwuwz_QstFuFx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370506473</pqid></control><display><type>article</type><title>Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Tonellato, Marika ; Piccione, Monica ; Gasparotto, Matteo ; Bellet, Pietro ; Tibaudo, Lucia ; Vicentini, Nicola ; Bergantino, Elisabetta ; Menna, Enzo ; Vitiello, Libero ; Di Liddo, Rosa ; Filippini, Francesco</creator><creatorcontrib>Tonellato, Marika ; Piccione, Monica ; Gasparotto, Matteo ; Bellet, Pietro ; Tibaudo, Lucia ; Vicentini, Nicola ; Bergantino, Elisabetta ; Menna, Enzo ; Vitiello, Libero ; Di Liddo, Rosa ; Filippini, Francesco</creatorcontrib><description>Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffolds with poly-L-lactic acid (PLLA) matrix and three different p-methoxyphenyl functionalized carbon nanofillers, namely, carbon nanotubes (CNTs), carbon nanohorns (CNHs), and reduced graphene oxide (RGO), dispersed at varying concentrations. qRT-PCR analysis of the modulation of neuronal markers in human circulating multipotent cells cultured on nanocomposite scaffolds showed high variability in their expression patterns depending on the scaffolds' inhomogeneities. Local stimuli variation could result in a multi- to oligopotency shift and commitment towards multiple cell lineages, which was assessed by the qRT-PCR profiling of markers for neural, adipogenic, and myogenic cell lineages. Less conductive scaffolds, i.e., bare poly-L-lactic acid (PLLA)-, CNH-, and RGO-based nanocomposites, appeared to boost the expression of myogenic-lineage marker genes. Moreover, scaffolds are much more effective on early commitment than in subsequent differentiation. This work suggests that biomimetic PLLA carbon-nanomaterial (PLLA-CNM) scaffolds combined with multipotent autologous cells can represent a powerful tool in the regenerative medicine of multiple tissue types, opening the route to next analyses with specific and standardized scaffold features.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10030415</identifier><identifier>PMID: 32120984</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>biomimetic nanomaterials ; carbon nanohorns ; carbon nanostructures ; carbon nanotubes ; Chemistry ; Chemistry, Multidisciplinary ; graphene ; human circulating multipotent cells ; Materials Science ; Materials Science, Multidisciplinary ; myod1 ; myogenic commitment ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; plla-based scaffolds ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>Nanomaterials (Basel, Switzerland), 2020-02, Vol.10 (3), p.415, Article 415</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526090400015</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c450t-813508aed6a391a4090728fc485d53297004eba9bbfad63c4db6752387f5933f3</citedby><cites>FETCH-LOGICAL-c450t-813508aed6a391a4090728fc485d53297004eba9bbfad63c4db6752387f5933f3</cites><orcidid>0000-0002-8028-0676 ; 0000-0003-4933-2578 ; 0000-0001-8402-7136 ; 0000-0002-9448-4776 ; 0000-0001-5456-1960 ; 0000-0003-0017-0838 ; 0000-0001-5672-0726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152835/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2112,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32120984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tonellato, Marika</creatorcontrib><creatorcontrib>Piccione, Monica</creatorcontrib><creatorcontrib>Gasparotto, Matteo</creatorcontrib><creatorcontrib>Bellet, Pietro</creatorcontrib><creatorcontrib>Tibaudo, Lucia</creatorcontrib><creatorcontrib>Vicentini, Nicola</creatorcontrib><creatorcontrib>Bergantino, Elisabetta</creatorcontrib><creatorcontrib>Menna, Enzo</creatorcontrib><creatorcontrib>Vitiello, Libero</creatorcontrib><creatorcontrib>Di Liddo, Rosa</creatorcontrib><creatorcontrib>Filippini, Francesco</creatorcontrib><title>Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>NANOMATERIALS-BASEL</addtitle><addtitle>Nanomaterials (Basel)</addtitle><description>Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffolds with poly-L-lactic acid (PLLA) matrix and three different p-methoxyphenyl functionalized carbon nanofillers, namely, carbon nanotubes (CNTs), carbon nanohorns (CNHs), and reduced graphene oxide (RGO), dispersed at varying concentrations. qRT-PCR analysis of the modulation of neuronal markers in human circulating multipotent cells cultured on nanocomposite scaffolds showed high variability in their expression patterns depending on the scaffolds' inhomogeneities. Local stimuli variation could result in a multi- to oligopotency shift and commitment towards multiple cell lineages, which was assessed by the qRT-PCR profiling of markers for neural, adipogenic, and myogenic cell lineages. Less conductive scaffolds, i.e., bare poly-L-lactic acid (PLLA)-, CNH-, and RGO-based nanocomposites, appeared to boost the expression of myogenic-lineage marker genes. Moreover, scaffolds are much more effective on early commitment than in subsequent differentiation. This work suggests that biomimetic PLLA carbon-nanomaterial (PLLA-CNM) scaffolds combined with multipotent autologous cells can represent a powerful tool in the regenerative medicine of multiple tissue types, opening the route to next analyses with specific and standardized scaffold features.</description><subject>biomimetic nanomaterials</subject><subject>carbon nanohorns</subject><subject>carbon nanostructures</subject><subject>carbon nanotubes</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>graphene</subject><subject>human circulating multipotent cells</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>myod1</subject><subject>myogenic commitment</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>plla-based scaffolds</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk2PFCEQhjtG427WvXk2HE20FRqYhovJbkfdScaPZPXcqaZhZEPDCLRmfpd_UGZmncze5EJRPLxVRVVVPSf4DaUSv_XgA8GYYkb4o-q8wa2smZTk8Yl9Vl2mdIfLkoQKTp9WZ7QhDZaCnVd_ujBNNk_aZxQMuppzcGEd5oRu5gk8-jS7bDch7-5vs55Qp51LKHh0bcNkJ52tQl-D29aregVqd7pSdqyvIekR3SowJrgxoWUqz2Pwa7dFS2_crL0qwLDduWeV56gR-BF1ofh9jpBtiVEy6iAOxfpcCp0g62jBPaueGHBJX97vF9X3D--_dTf16svHZXe1qhXjONeCUI4F6HEBVBJgWOK2EUYxwUdOG9lizPQAchgMjAuq2DgsWt5Q0RouKTX0oloedMcAd_0m2gnitg9g-70jxHUPsVTsdI8FAUpUM0hDmBRUyHYgIDBI1bTYQNF6d9DazMOkx0ON7oHowxtvf_Tr8KtvCW8E5UXg5b1ADD9nnXI_2aRKM8Dr0q6-oS3meMFaWtDXB1TFkFLU5hiG4H43Nv3p2BT8xWlqR_jfkBTg1QH4rYdgkrK73h2xMle8WZTPZcXay4n_pzub953uwuwz_QstFuFx</recordid><startdate>20200227</startdate><enddate>20200227</enddate><creator>Tonellato, Marika</creator><creator>Piccione, Monica</creator><creator>Gasparotto, Matteo</creator><creator>Bellet, Pietro</creator><creator>Tibaudo, Lucia</creator><creator>Vicentini, Nicola</creator><creator>Bergantino, Elisabetta</creator><creator>Menna, Enzo</creator><creator>Vitiello, Libero</creator><creator>Di Liddo, Rosa</creator><creator>Filippini, Francesco</creator><general>Mdpi</general><general>MDPI</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8028-0676</orcidid><orcidid>https://orcid.org/0000-0003-4933-2578</orcidid><orcidid>https://orcid.org/0000-0001-8402-7136</orcidid><orcidid>https://orcid.org/0000-0002-9448-4776</orcidid><orcidid>https://orcid.org/0000-0001-5456-1960</orcidid><orcidid>https://orcid.org/0000-0003-0017-0838</orcidid><orcidid>https://orcid.org/0000-0001-5672-0726</orcidid></search><sort><creationdate>20200227</creationdate><title>Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial</title><author>Tonellato, Marika ; Piccione, Monica ; Gasparotto, Matteo ; Bellet, Pietro ; Tibaudo, Lucia ; Vicentini, Nicola ; Bergantino, Elisabetta ; Menna, Enzo ; Vitiello, Libero ; Di Liddo, Rosa ; Filippini, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-813508aed6a391a4090728fc485d53297004eba9bbfad63c4db6752387f5933f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>biomimetic nanomaterials</topic><topic>carbon nanohorns</topic><topic>carbon nanostructures</topic><topic>carbon nanotubes</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>graphene</topic><topic>human circulating multipotent cells</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>myod1</topic><topic>myogenic commitment</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>plla-based scaffolds</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tonellato, Marika</creatorcontrib><creatorcontrib>Piccione, Monica</creatorcontrib><creatorcontrib>Gasparotto, Matteo</creatorcontrib><creatorcontrib>Bellet, Pietro</creatorcontrib><creatorcontrib>Tibaudo, Lucia</creatorcontrib><creatorcontrib>Vicentini, Nicola</creatorcontrib><creatorcontrib>Bergantino, Elisabetta</creatorcontrib><creatorcontrib>Menna, Enzo</creatorcontrib><creatorcontrib>Vitiello, Libero</creatorcontrib><creatorcontrib>Di Liddo, Rosa</creatorcontrib><creatorcontrib>Filippini, Francesco</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tonellato, Marika</au><au>Piccione, Monica</au><au>Gasparotto, Matteo</au><au>Bellet, Pietro</au><au>Tibaudo, Lucia</au><au>Vicentini, Nicola</au><au>Bergantino, Elisabetta</au><au>Menna, Enzo</au><au>Vitiello, Libero</au><au>Di Liddo, Rosa</au><au>Filippini, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><stitle>NANOMATERIALS-BASEL</stitle><addtitle>Nanomaterials (Basel)</addtitle><date>2020-02-27</date><risdate>2020</risdate><volume>10</volume><issue>3</issue><spage>415</spage><pages>415-</pages><artnum>415</artnum><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffolds with poly-L-lactic acid (PLLA) matrix and three different p-methoxyphenyl functionalized carbon nanofillers, namely, carbon nanotubes (CNTs), carbon nanohorns (CNHs), and reduced graphene oxide (RGO), dispersed at varying concentrations. qRT-PCR analysis of the modulation of neuronal markers in human circulating multipotent cells cultured on nanocomposite scaffolds showed high variability in their expression patterns depending on the scaffolds' inhomogeneities. Local stimuli variation could result in a multi- to oligopotency shift and commitment towards multiple cell lineages, which was assessed by the qRT-PCR profiling of markers for neural, adipogenic, and myogenic cell lineages. Less conductive scaffolds, i.e., bare poly-L-lactic acid (PLLA)-, CNH-, and RGO-based nanocomposites, appeared to boost the expression of myogenic-lineage marker genes. Moreover, scaffolds are much more effective on early commitment than in subsequent differentiation. This work suggests that biomimetic PLLA carbon-nanomaterial (PLLA-CNM) scaffolds combined with multipotent autologous cells can represent a powerful tool in the regenerative medicine of multiple tissue types, opening the route to next analyses with specific and standardized scaffold features.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32120984</pmid><doi>10.3390/nano10030415</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8028-0676</orcidid><orcidid>https://orcid.org/0000-0003-4933-2578</orcidid><orcidid>https://orcid.org/0000-0001-8402-7136</orcidid><orcidid>https://orcid.org/0000-0002-9448-4776</orcidid><orcidid>https://orcid.org/0000-0001-5456-1960</orcidid><orcidid>https://orcid.org/0000-0003-0017-0838</orcidid><orcidid>https://orcid.org/0000-0001-5672-0726</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2020-02, Vol.10 (3), p.415, Article 415
issn 2079-4991
2079-4991
language eng
recordid cdi_proquest_miscellaneous_2370506473
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects biomimetic nanomaterials
carbon nanohorns
carbon nanostructures
carbon nanotubes
Chemistry
Chemistry, Multidisciplinary
graphene
human circulating multipotent cells
Materials Science
Materials Science, Multidisciplinary
myod1
myogenic commitment
Nanoscience & Nanotechnology
Physical Sciences
Physics
Physics, Applied
plla-based scaffolds
Science & Technology
Science & Technology - Other Topics
Technology
title Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-Lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commitment%20of%20Autologous%20Human%20Multipotent%20Stem%20Cells%20on%20Biomimetic%20Poly-L-Lactic%20Acid-Based%20Scaffolds%20Is%20Strongly%20Influenced%20by%20Structure%20and%20Concentration%20of%20Carbon%20Nanomaterial&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Tonellato,%20Marika&rft.date=2020-02-27&rft.volume=10&rft.issue=3&rft.spage=415&rft.pages=415-&rft.artnum=415&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10030415&rft_dat=%3Cproquest_doaj_%3E2370506473%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2370506473&rft_id=info:pmid/32120984&rft_doaj_id=oai_doaj_org_article_081a31c2b9f14983897b1a80a9c270fa&rfr_iscdi=true