Paper-based microchip electrophoresis for point-of-care hemoglobin testing
Nearly 7% of the world's population live with a hemoglobin variant. Hemoglobins S, C, and E are the most common and significant hemoglobin variants worldwide. Sickle cell disease, caused by hemoglobin S, is highly prevalent in sub-Saharan Africa and in tribal populations of Central India. Hemog...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2020-04, Vol.145 (7), p.2525-2542 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2542 |
---|---|
container_issue | 7 |
container_start_page | 2525 |
container_title | Analyst (London) |
container_volume | 145 |
creator | Hasan, Muhammad Noman Fraiwan, Arwa An, Ran Alapan, Yunus Ung, Ryan Akkus, Asya Xu, Julia Z Rezac, Amy J Kocmich, Nicholas J Creary, Melissa S Oginni, Tolulope Olanipekun, Grace Mfon Hassan-Hanga, Fatimah Jibir, Binta W Gambo, Safiya Verma, Anil K Bharti, Praveen K Riolueang, Suchada Ngimhung, Takdanai Suksangpleng, Thidarat Thota, Priyaleela Werner, Greg Shanmugam, Rajasubramaniam Das, Aparup Viprakasit, Vip Piccone, Connie M Little, Jane A Obaro, Stephen K Gurkan, Umut A |
description | Nearly 7% of the world's population live with a hemoglobin variant. Hemoglobins S, C, and E are the most common and significant hemoglobin variants worldwide. Sickle cell disease, caused by hemoglobin S, is highly prevalent in sub-Saharan Africa and in tribal populations of Central India. Hemoglobin C is common in West Africa, and hemoglobin E is common in Southeast Asia. Screening for significant hemoglobin disorders is not currently feasible in many low-income countries with the high disease burden. Lack of early diagnosis leads to preventable high morbidity and mortality in children born with hemoglobin variants in low-resource settings. Here, we describe HemeChip, the first miniaturized, paper-based, microchip electrophoresis platform for identifying the most common hemoglobin variants easily and affordably at the point-of-care in low-resource settings. HemeChip test works with a drop of blood. HemeChip system guides the user step-by-step through the test procedure with animated on-screen instructions. Hemoglobin identification and quantification is automatically performed, and hemoglobin types and percentages are displayed in an easily understandable, objective way. We show the feasibility and high accuracy of HemeChip
via
testing 768 subjects by clinical sites in the United States, Central India, sub-Saharan Africa, and Southeast Asia. Validation studies include hemoglobin E testing in Bangkok, Thailand, and hemoglobin S testing in Chhattisgarh, India, and in Kano, Nigeria, where the sickle cell disease burden is the highest in the world. Tests were performed by local users, including healthcare workers and clinical laboratory personnel. Study design, methods, and results are presented according to the Standards for Reporting Diagnostic Accuracy (STARD). HemeChip correctly identified all subjects with hemoglobin S, C, and E variants with 100% sensitivity, and displayed an overall diagnostic accuracy of 98.4% in comparison to reference standard methods. HemeChip is a versatile, mass-producible microchip electrophoresis platform that addresses a major unmet need of decentralized hemoglobin analysis in resource-limited settings.
We present a versatile, mass-producible, paper-based microchip electrophoresis platform that enables rapid, affordable, decentralized hemoglobin testing at the point-of-care. |
doi_str_mv | 10.1039/c9an02250c |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2370495198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384518565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-685eddbd5e5f374a6f9923e1fe3ca4a6999e532e18322c6b054deb2fd520125b3</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxS0Egi3lwr0oVS8IKa0_Mln7UgmtChShtgc4W44z3jVK4tTOVuK_r-nSBXroaTR6Pz29mUfIMaMfGRXqk1VmoJwDtTtkxkRdlQBc7pIZpVSUvIbqgLxJ6T6vjALdJweCMy6kVDNy_cOMGMvGJGyL3tsY7MqPBXZopxjGVYiYfCpciMUY_DCVwZXWRCxW2IdlFxo_FBOmyQ_Lt2TPmS7h0dM8JHcXX24XV-XN98uvi_Ob0lYKprKWgG3btIDgxLwytVOKC2QOhTV5VUohCI5MCs5t3VCoWmy4a4FTxqERh-TzxndcNz22Focpmk6P0fcmPuhgvH6tDH6ll-GXngsGEqpscPpkEMPPdQ6ve58sdp0ZMKyT5mJOc1SmZEY__IPeh3Uc8nmZkhUwCTVk6mxD5felFNFtwzCqHyvSC3X-7U9FiwyfvIy_Rf92koF3GyAmu1WfO876-__pemyd-A239qIv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384518565</pqid></control><display><type>article</type><title>Paper-based microchip electrophoresis for point-of-care hemoglobin testing</title><source>MEDLINE</source><source>Royal Society of Chemistry Journals Archive</source><source>Alma/SFX Local Collection</source><source>Royal Society of Chemistry</source><creator>Hasan, Muhammad Noman ; Fraiwan, Arwa ; An, Ran ; Alapan, Yunus ; Ung, Ryan ; Akkus, Asya ; Xu, Julia Z ; Rezac, Amy J ; Kocmich, Nicholas J ; Creary, Melissa S ; Oginni, Tolulope ; Olanipekun, Grace Mfon ; Hassan-Hanga, Fatimah ; Jibir, Binta W ; Gambo, Safiya ; Verma, Anil K ; Bharti, Praveen K ; Riolueang, Suchada ; Ngimhung, Takdanai ; Suksangpleng, Thidarat ; Thota, Priyaleela ; Werner, Greg ; Shanmugam, Rajasubramaniam ; Das, Aparup ; Viprakasit, Vip ; Piccone, Connie M ; Little, Jane A ; Obaro, Stephen K ; Gurkan, Umut A</creator><creatorcontrib>Hasan, Muhammad Noman ; Fraiwan, Arwa ; An, Ran ; Alapan, Yunus ; Ung, Ryan ; Akkus, Asya ; Xu, Julia Z ; Rezac, Amy J ; Kocmich, Nicholas J ; Creary, Melissa S ; Oginni, Tolulope ; Olanipekun, Grace Mfon ; Hassan-Hanga, Fatimah ; Jibir, Binta W ; Gambo, Safiya ; Verma, Anil K ; Bharti, Praveen K ; Riolueang, Suchada ; Ngimhung, Takdanai ; Suksangpleng, Thidarat ; Thota, Priyaleela ; Werner, Greg ; Shanmugam, Rajasubramaniam ; Das, Aparup ; Viprakasit, Vip ; Piccone, Connie M ; Little, Jane A ; Obaro, Stephen K ; Gurkan, Umut A</creatorcontrib><description>Nearly 7% of the world's population live with a hemoglobin variant. Hemoglobins S, C, and E are the most common and significant hemoglobin variants worldwide. Sickle cell disease, caused by hemoglobin S, is highly prevalent in sub-Saharan Africa and in tribal populations of Central India. Hemoglobin C is common in West Africa, and hemoglobin E is common in Southeast Asia. Screening for significant hemoglobin disorders is not currently feasible in many low-income countries with the high disease burden. Lack of early diagnosis leads to preventable high morbidity and mortality in children born with hemoglobin variants in low-resource settings. Here, we describe HemeChip, the first miniaturized, paper-based, microchip electrophoresis platform for identifying the most common hemoglobin variants easily and affordably at the point-of-care in low-resource settings. HemeChip test works with a drop of blood. HemeChip system guides the user step-by-step through the test procedure with animated on-screen instructions. Hemoglobin identification and quantification is automatically performed, and hemoglobin types and percentages are displayed in an easily understandable, objective way. We show the feasibility and high accuracy of HemeChip
via
testing 768 subjects by clinical sites in the United States, Central India, sub-Saharan Africa, and Southeast Asia. Validation studies include hemoglobin E testing in Bangkok, Thailand, and hemoglobin S testing in Chhattisgarh, India, and in Kano, Nigeria, where the sickle cell disease burden is the highest in the world. Tests were performed by local users, including healthcare workers and clinical laboratory personnel. Study design, methods, and results are presented according to the Standards for Reporting Diagnostic Accuracy (STARD). HemeChip correctly identified all subjects with hemoglobin S, C, and E variants with 100% sensitivity, and displayed an overall diagnostic accuracy of 98.4% in comparison to reference standard methods. HemeChip is a versatile, mass-producible microchip electrophoresis platform that addresses a major unmet need of decentralized hemoglobin analysis in resource-limited settings.
We present a versatile, mass-producible, paper-based microchip electrophoresis platform that enables rapid, affordable, decentralized hemoglobin testing at the point-of-care.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/c9an02250c</identifier><identifier>PMID: 32123889</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Accuracy ; Diagnostic systems ; Electrophoresis ; Electrophoresis, Microchip - methods ; Feasibility ; Hemoglobin ; Hemoglobin, Sickle - analysis ; Hemoglobins - analysis ; Humans ; Image Processing, Computer-Assisted ; Miniaturization ; Point-of-Care Systems ; Semiconductors ; Sickle cell disease ; Test procedures ; User-Computer Interface</subject><ispartof>Analyst (London), 2020-04, Vol.145 (7), p.2525-2542</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-685eddbd5e5f374a6f9923e1fe3ca4a6999e532e18322c6b054deb2fd520125b3</citedby><cites>FETCH-LOGICAL-c495t-685eddbd5e5f374a6f9923e1fe3ca4a6999e532e18322c6b054deb2fd520125b3</cites><orcidid>0000-0001-9371-9409 ; 0000-0003-1413-6139 ; 0000-0002-0331-9960 ; 0000-0002-7745-409X ; 0000-0001-7904-3377 ; 0000-0003-3064-7342 ; 0000-0002-5612-5246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2818,2819,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32123889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasan, Muhammad Noman</creatorcontrib><creatorcontrib>Fraiwan, Arwa</creatorcontrib><creatorcontrib>An, Ran</creatorcontrib><creatorcontrib>Alapan, Yunus</creatorcontrib><creatorcontrib>Ung, Ryan</creatorcontrib><creatorcontrib>Akkus, Asya</creatorcontrib><creatorcontrib>Xu, Julia Z</creatorcontrib><creatorcontrib>Rezac, Amy J</creatorcontrib><creatorcontrib>Kocmich, Nicholas J</creatorcontrib><creatorcontrib>Creary, Melissa S</creatorcontrib><creatorcontrib>Oginni, Tolulope</creatorcontrib><creatorcontrib>Olanipekun, Grace Mfon</creatorcontrib><creatorcontrib>Hassan-Hanga, Fatimah</creatorcontrib><creatorcontrib>Jibir, Binta W</creatorcontrib><creatorcontrib>Gambo, Safiya</creatorcontrib><creatorcontrib>Verma, Anil K</creatorcontrib><creatorcontrib>Bharti, Praveen K</creatorcontrib><creatorcontrib>Riolueang, Suchada</creatorcontrib><creatorcontrib>Ngimhung, Takdanai</creatorcontrib><creatorcontrib>Suksangpleng, Thidarat</creatorcontrib><creatorcontrib>Thota, Priyaleela</creatorcontrib><creatorcontrib>Werner, Greg</creatorcontrib><creatorcontrib>Shanmugam, Rajasubramaniam</creatorcontrib><creatorcontrib>Das, Aparup</creatorcontrib><creatorcontrib>Viprakasit, Vip</creatorcontrib><creatorcontrib>Piccone, Connie M</creatorcontrib><creatorcontrib>Little, Jane A</creatorcontrib><creatorcontrib>Obaro, Stephen K</creatorcontrib><creatorcontrib>Gurkan, Umut A</creatorcontrib><title>Paper-based microchip electrophoresis for point-of-care hemoglobin testing</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>Nearly 7% of the world's population live with a hemoglobin variant. Hemoglobins S, C, and E are the most common and significant hemoglobin variants worldwide. Sickle cell disease, caused by hemoglobin S, is highly prevalent in sub-Saharan Africa and in tribal populations of Central India. Hemoglobin C is common in West Africa, and hemoglobin E is common in Southeast Asia. Screening for significant hemoglobin disorders is not currently feasible in many low-income countries with the high disease burden. Lack of early diagnosis leads to preventable high morbidity and mortality in children born with hemoglobin variants in low-resource settings. Here, we describe HemeChip, the first miniaturized, paper-based, microchip electrophoresis platform for identifying the most common hemoglobin variants easily and affordably at the point-of-care in low-resource settings. HemeChip test works with a drop of blood. HemeChip system guides the user step-by-step through the test procedure with animated on-screen instructions. Hemoglobin identification and quantification is automatically performed, and hemoglobin types and percentages are displayed in an easily understandable, objective way. We show the feasibility and high accuracy of HemeChip
via
testing 768 subjects by clinical sites in the United States, Central India, sub-Saharan Africa, and Southeast Asia. Validation studies include hemoglobin E testing in Bangkok, Thailand, and hemoglobin S testing in Chhattisgarh, India, and in Kano, Nigeria, where the sickle cell disease burden is the highest in the world. Tests were performed by local users, including healthcare workers and clinical laboratory personnel. Study design, methods, and results are presented according to the Standards for Reporting Diagnostic Accuracy (STARD). HemeChip correctly identified all subjects with hemoglobin S, C, and E variants with 100% sensitivity, and displayed an overall diagnostic accuracy of 98.4% in comparison to reference standard methods. HemeChip is a versatile, mass-producible microchip electrophoresis platform that addresses a major unmet need of decentralized hemoglobin analysis in resource-limited settings.
We present a versatile, mass-producible, paper-based microchip electrophoresis platform that enables rapid, affordable, decentralized hemoglobin testing at the point-of-care.</description><subject>Accuracy</subject><subject>Diagnostic systems</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Microchip - methods</subject><subject>Feasibility</subject><subject>Hemoglobin</subject><subject>Hemoglobin, Sickle - analysis</subject><subject>Hemoglobins - analysis</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Miniaturization</subject><subject>Point-of-Care Systems</subject><subject>Semiconductors</subject><subject>Sickle cell disease</subject><subject>Test procedures</subject><subject>User-Computer Interface</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1P3DAQxS0Egi3lwr0oVS8IKa0_Mln7UgmtChShtgc4W44z3jVK4tTOVuK_r-nSBXroaTR6Pz29mUfIMaMfGRXqk1VmoJwDtTtkxkRdlQBc7pIZpVSUvIbqgLxJ6T6vjALdJweCMy6kVDNy_cOMGMvGJGyL3tsY7MqPBXZopxjGVYiYfCpciMUY_DCVwZXWRCxW2IdlFxo_FBOmyQ_Lt2TPmS7h0dM8JHcXX24XV-XN98uvi_Ob0lYKprKWgG3btIDgxLwytVOKC2QOhTV5VUohCI5MCs5t3VCoWmy4a4FTxqERh-TzxndcNz22Focpmk6P0fcmPuhgvH6tDH6ll-GXngsGEqpscPpkEMPPdQ6ve58sdp0ZMKyT5mJOc1SmZEY__IPeh3Uc8nmZkhUwCTVk6mxD5felFNFtwzCqHyvSC3X-7U9FiwyfvIy_Rf92koF3GyAmu1WfO876-__pemyd-A239qIv</recordid><startdate>20200407</startdate><enddate>20200407</enddate><creator>Hasan, Muhammad Noman</creator><creator>Fraiwan, Arwa</creator><creator>An, Ran</creator><creator>Alapan, Yunus</creator><creator>Ung, Ryan</creator><creator>Akkus, Asya</creator><creator>Xu, Julia Z</creator><creator>Rezac, Amy J</creator><creator>Kocmich, Nicholas J</creator><creator>Creary, Melissa S</creator><creator>Oginni, Tolulope</creator><creator>Olanipekun, Grace Mfon</creator><creator>Hassan-Hanga, Fatimah</creator><creator>Jibir, Binta W</creator><creator>Gambo, Safiya</creator><creator>Verma, Anil K</creator><creator>Bharti, Praveen K</creator><creator>Riolueang, Suchada</creator><creator>Ngimhung, Takdanai</creator><creator>Suksangpleng, Thidarat</creator><creator>Thota, Priyaleela</creator><creator>Werner, Greg</creator><creator>Shanmugam, Rajasubramaniam</creator><creator>Das, Aparup</creator><creator>Viprakasit, Vip</creator><creator>Piccone, Connie M</creator><creator>Little, Jane A</creator><creator>Obaro, Stephen K</creator><creator>Gurkan, Umut A</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9371-9409</orcidid><orcidid>https://orcid.org/0000-0003-1413-6139</orcidid><orcidid>https://orcid.org/0000-0002-0331-9960</orcidid><orcidid>https://orcid.org/0000-0002-7745-409X</orcidid><orcidid>https://orcid.org/0000-0001-7904-3377</orcidid><orcidid>https://orcid.org/0000-0003-3064-7342</orcidid><orcidid>https://orcid.org/0000-0002-5612-5246</orcidid></search><sort><creationdate>20200407</creationdate><title>Paper-based microchip electrophoresis for point-of-care hemoglobin testing</title><author>Hasan, Muhammad Noman ; Fraiwan, Arwa ; An, Ran ; Alapan, Yunus ; Ung, Ryan ; Akkus, Asya ; Xu, Julia Z ; Rezac, Amy J ; Kocmich, Nicholas J ; Creary, Melissa S ; Oginni, Tolulope ; Olanipekun, Grace Mfon ; Hassan-Hanga, Fatimah ; Jibir, Binta W ; Gambo, Safiya ; Verma, Anil K ; Bharti, Praveen K ; Riolueang, Suchada ; Ngimhung, Takdanai ; Suksangpleng, Thidarat ; Thota, Priyaleela ; Werner, Greg ; Shanmugam, Rajasubramaniam ; Das, Aparup ; Viprakasit, Vip ; Piccone, Connie M ; Little, Jane A ; Obaro, Stephen K ; Gurkan, Umut A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-685eddbd5e5f374a6f9923e1fe3ca4a6999e532e18322c6b054deb2fd520125b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Diagnostic systems</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Microchip - methods</topic><topic>Feasibility</topic><topic>Hemoglobin</topic><topic>Hemoglobin, Sickle - analysis</topic><topic>Hemoglobins - analysis</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Miniaturization</topic><topic>Point-of-Care Systems</topic><topic>Semiconductors</topic><topic>Sickle cell disease</topic><topic>Test procedures</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Muhammad Noman</creatorcontrib><creatorcontrib>Fraiwan, Arwa</creatorcontrib><creatorcontrib>An, Ran</creatorcontrib><creatorcontrib>Alapan, Yunus</creatorcontrib><creatorcontrib>Ung, Ryan</creatorcontrib><creatorcontrib>Akkus, Asya</creatorcontrib><creatorcontrib>Xu, Julia Z</creatorcontrib><creatorcontrib>Rezac, Amy J</creatorcontrib><creatorcontrib>Kocmich, Nicholas J</creatorcontrib><creatorcontrib>Creary, Melissa S</creatorcontrib><creatorcontrib>Oginni, Tolulope</creatorcontrib><creatorcontrib>Olanipekun, Grace Mfon</creatorcontrib><creatorcontrib>Hassan-Hanga, Fatimah</creatorcontrib><creatorcontrib>Jibir, Binta W</creatorcontrib><creatorcontrib>Gambo, Safiya</creatorcontrib><creatorcontrib>Verma, Anil K</creatorcontrib><creatorcontrib>Bharti, Praveen K</creatorcontrib><creatorcontrib>Riolueang, Suchada</creatorcontrib><creatorcontrib>Ngimhung, Takdanai</creatorcontrib><creatorcontrib>Suksangpleng, Thidarat</creatorcontrib><creatorcontrib>Thota, Priyaleela</creatorcontrib><creatorcontrib>Werner, Greg</creatorcontrib><creatorcontrib>Shanmugam, Rajasubramaniam</creatorcontrib><creatorcontrib>Das, Aparup</creatorcontrib><creatorcontrib>Viprakasit, Vip</creatorcontrib><creatorcontrib>Piccone, Connie M</creatorcontrib><creatorcontrib>Little, Jane A</creatorcontrib><creatorcontrib>Obaro, Stephen K</creatorcontrib><creatorcontrib>Gurkan, Umut A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasan, Muhammad Noman</au><au>Fraiwan, Arwa</au><au>An, Ran</au><au>Alapan, Yunus</au><au>Ung, Ryan</au><au>Akkus, Asya</au><au>Xu, Julia Z</au><au>Rezac, Amy J</au><au>Kocmich, Nicholas J</au><au>Creary, Melissa S</au><au>Oginni, Tolulope</au><au>Olanipekun, Grace Mfon</au><au>Hassan-Hanga, Fatimah</au><au>Jibir, Binta W</au><au>Gambo, Safiya</au><au>Verma, Anil K</au><au>Bharti, Praveen K</au><au>Riolueang, Suchada</au><au>Ngimhung, Takdanai</au><au>Suksangpleng, Thidarat</au><au>Thota, Priyaleela</au><au>Werner, Greg</au><au>Shanmugam, Rajasubramaniam</au><au>Das, Aparup</au><au>Viprakasit, Vip</au><au>Piccone, Connie M</au><au>Little, Jane A</au><au>Obaro, Stephen K</au><au>Gurkan, Umut A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paper-based microchip electrophoresis for point-of-care hemoglobin testing</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2020-04-07</date><risdate>2020</risdate><volume>145</volume><issue>7</issue><spage>2525</spage><epage>2542</epage><pages>2525-2542</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>Nearly 7% of the world's population live with a hemoglobin variant. Hemoglobins S, C, and E are the most common and significant hemoglobin variants worldwide. Sickle cell disease, caused by hemoglobin S, is highly prevalent in sub-Saharan Africa and in tribal populations of Central India. Hemoglobin C is common in West Africa, and hemoglobin E is common in Southeast Asia. Screening for significant hemoglobin disorders is not currently feasible in many low-income countries with the high disease burden. Lack of early diagnosis leads to preventable high morbidity and mortality in children born with hemoglobin variants in low-resource settings. Here, we describe HemeChip, the first miniaturized, paper-based, microchip electrophoresis platform for identifying the most common hemoglobin variants easily and affordably at the point-of-care in low-resource settings. HemeChip test works with a drop of blood. HemeChip system guides the user step-by-step through the test procedure with animated on-screen instructions. Hemoglobin identification and quantification is automatically performed, and hemoglobin types and percentages are displayed in an easily understandable, objective way. We show the feasibility and high accuracy of HemeChip
via
testing 768 subjects by clinical sites in the United States, Central India, sub-Saharan Africa, and Southeast Asia. Validation studies include hemoglobin E testing in Bangkok, Thailand, and hemoglobin S testing in Chhattisgarh, India, and in Kano, Nigeria, where the sickle cell disease burden is the highest in the world. Tests were performed by local users, including healthcare workers and clinical laboratory personnel. Study design, methods, and results are presented according to the Standards for Reporting Diagnostic Accuracy (STARD). HemeChip correctly identified all subjects with hemoglobin S, C, and E variants with 100% sensitivity, and displayed an overall diagnostic accuracy of 98.4% in comparison to reference standard methods. HemeChip is a versatile, mass-producible microchip electrophoresis platform that addresses a major unmet need of decentralized hemoglobin analysis in resource-limited settings.
We present a versatile, mass-producible, paper-based microchip electrophoresis platform that enables rapid, affordable, decentralized hemoglobin testing at the point-of-care.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32123889</pmid><doi>10.1039/c9an02250c</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9371-9409</orcidid><orcidid>https://orcid.org/0000-0003-1413-6139</orcidid><orcidid>https://orcid.org/0000-0002-0331-9960</orcidid><orcidid>https://orcid.org/0000-0002-7745-409X</orcidid><orcidid>https://orcid.org/0000-0001-7904-3377</orcidid><orcidid>https://orcid.org/0000-0003-3064-7342</orcidid><orcidid>https://orcid.org/0000-0002-5612-5246</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2654 |
ispartof | Analyst (London), 2020-04, Vol.145 (7), p.2525-2542 |
issn | 0003-2654 1364-5528 |
language | eng |
recordid | cdi_proquest_miscellaneous_2370495198 |
source | MEDLINE; Royal Society of Chemistry Journals Archive; Alma/SFX Local Collection; Royal Society of Chemistry |
subjects | Accuracy Diagnostic systems Electrophoresis Electrophoresis, Microchip - methods Feasibility Hemoglobin Hemoglobin, Sickle - analysis Hemoglobins - analysis Humans Image Processing, Computer-Assisted Miniaturization Point-of-Care Systems Semiconductors Sickle cell disease Test procedures User-Computer Interface |
title | Paper-based microchip electrophoresis for point-of-care hemoglobin testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paper-based%20microchip%20electrophoresis%20for%20point-of-care%20hemoglobin%20testing&rft.jtitle=Analyst%20(London)&rft.au=Hasan,%20Muhammad%20Noman&rft.date=2020-04-07&rft.volume=145&rft.issue=7&rft.spage=2525&rft.epage=2542&rft.pages=2525-2542&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/c9an02250c&rft_dat=%3Cproquest_rsc_p%3E2384518565%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384518565&rft_id=info:pmid/32123889&rfr_iscdi=true |