In-plane backward and zero group velocity guided modes in rigid and soft strips
Elastic waves guided along bars of rectangular cross sections exhibit complex dispersion. This paper studies in-plane modes propagating at low frequencies in thin isotropic rectangular waveguides through experiments and numerical simulations. These modes result from the coupling at the edge between...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2020-02, Vol.147 (2), p.1302-1310 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1310 |
---|---|
container_issue | 2 |
container_start_page | 1302 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 147 |
creator | Laurent, Jérôme Royer, Daniel Prada, Claire |
description | Elastic waves guided along bars of rectangular cross sections exhibit complex dispersion. This paper studies in-plane modes propagating at low frequencies in thin isotropic rectangular waveguides through experiments and numerical simulations. These modes result from the coupling at the edge between the first order shear horizontal mode SH0 of phase velocity equal to the shear velocity VT and the first order symmetrical Lamb mode S0 of phase velocity equal to the plate velocity VP. In the low frequency domain, the dispersion curves of these modes are close to those of Lamb modes propagating in plates of bulk wave velocities VP and VT. The dispersion curves of backward modes and the associated zero group velocity (ZGV) resonances are measured in a metal tape using noncontact laser ultrasonic techniques. Numerical calculations of in-plane modes in a soft ribbon of Poisson's ratio
ν
≈
0.5 confirm that, due to very low shear velocity, backward waves and ZGV modes exist at frequencies that are hundreds of times lower than ZGV resonances in metal tapes of the same geometry. The results are compared to theoretical dispersion curves calculated using the method provided in Krushynska and Meleshko [J. Acoust. Soc. Am. 129, 1324–1335 (2011)]. |
doi_str_mv | 10.1121/10.0000760 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2369880891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369880891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-ccf31f7975696d69bd14a4053e234115225f16e06003e0ea606c13b02cc8bbb13</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk5v_AGSSz-o5qPNmssx1AmD3eh1SZN0RtumJu1k_npTOocXYm5ecnh4DucF4ByjW4wJvguJwpsydADGOCEoShMSH4JxGOIo5oyNwIn3b-GbpJQfgxElGFOK-RisnuqoKUWtYS7k-6dwCopawS_tLFw72zVwo0srTbuF684orWBllfbQ1NCZtRlob4sW-taZxp-Co0KUXp_tcgJeHu6f54touXp8ms-WkYwJbyMpC4qLKZ8mjDPFeK5wLGKUUE1ojMMNJCkw04ghRDXSgiEmMc0RkTLN8xzTCbgavK-izBpnKuG2mRUmW8yWWT9DFKXBwjY9ezmwjbMfnfZtVhkvddmfbTufEcp4mqKU9-j1gEpnvXe62Lsxyvqy-9yVHeCLnbfLK6326E-7AbgZAB8KFK2x9Z7ZWPdLlTWq-I_-Y_k3nmuTFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369880891</pqid></control><display><type>article</type><title>In-plane backward and zero group velocity guided modes in rigid and soft strips</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Laurent, Jérôme ; Royer, Daniel ; Prada, Claire</creator><creatorcontrib>Laurent, Jérôme ; Royer, Daniel ; Prada, Claire</creatorcontrib><description>Elastic waves guided along bars of rectangular cross sections exhibit complex dispersion. This paper studies in-plane modes propagating at low frequencies in thin isotropic rectangular waveguides through experiments and numerical simulations. These modes result from the coupling at the edge between the first order shear horizontal mode SH0 of phase velocity equal to the shear velocity VT and the first order symmetrical Lamb mode S0 of phase velocity equal to the plate velocity VP. In the low frequency domain, the dispersion curves of these modes are close to those of Lamb modes propagating in plates of bulk wave velocities VP and VT. The dispersion curves of backward modes and the associated zero group velocity (ZGV) resonances are measured in a metal tape using noncontact laser ultrasonic techniques. Numerical calculations of in-plane modes in a soft ribbon of Poisson's ratio
ν
≈
0.5 confirm that, due to very low shear velocity, backward waves and ZGV modes exist at frequencies that are hundreds of times lower than ZGV resonances in metal tapes of the same geometry. The results are compared to theoretical dispersion curves calculated using the method provided in Krushynska and Meleshko [J. Acoust. Soc. Am. 129, 1324–1335 (2011)].</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0000760</identifier><identifier>PMID: 32113319</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States: Acoustical Society of America</publisher><subject>Acoustics ; Engineering Sciences ; Mechanics ; Optics ; Photonic ; Physics ; Solid mechanics ; Vibrations</subject><ispartof>The Journal of the Acoustical Society of America, 2020-02, Vol.147 (2), p.1302-1310</ispartof><rights>Acoustical Society of America</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-ccf31f7975696d69bd14a4053e234115225f16e06003e0ea606c13b02cc8bbb13</citedby><cites>FETCH-LOGICAL-c429t-ccf31f7975696d69bd14a4053e234115225f16e06003e0ea606c13b02cc8bbb13</cites><orcidid>0000-0003-4645-5978 ; 0000-0002-2500-1099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0000760$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,230,314,780,784,794,885,1565,4511,27923,27924,76255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32113319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03082256$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laurent, Jérôme</creatorcontrib><creatorcontrib>Royer, Daniel</creatorcontrib><creatorcontrib>Prada, Claire</creatorcontrib><title>In-plane backward and zero group velocity guided modes in rigid and soft strips</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Elastic waves guided along bars of rectangular cross sections exhibit complex dispersion. This paper studies in-plane modes propagating at low frequencies in thin isotropic rectangular waveguides through experiments and numerical simulations. These modes result from the coupling at the edge between the first order shear horizontal mode SH0 of phase velocity equal to the shear velocity VT and the first order symmetrical Lamb mode S0 of phase velocity equal to the plate velocity VP. In the low frequency domain, the dispersion curves of these modes are close to those of Lamb modes propagating in plates of bulk wave velocities VP and VT. The dispersion curves of backward modes and the associated zero group velocity (ZGV) resonances are measured in a metal tape using noncontact laser ultrasonic techniques. Numerical calculations of in-plane modes in a soft ribbon of Poisson's ratio
ν
≈
0.5 confirm that, due to very low shear velocity, backward waves and ZGV modes exist at frequencies that are hundreds of times lower than ZGV resonances in metal tapes of the same geometry. The results are compared to theoretical dispersion curves calculated using the method provided in Krushynska and Meleshko [J. Acoust. Soc. Am. 129, 1324–1335 (2011)].</description><subject>Acoustics</subject><subject>Engineering Sciences</subject><subject>Mechanics</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Vibrations</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMobk5v_AGSSz-o5qPNmssx1AmD3eh1SZN0RtumJu1k_npTOocXYm5ecnh4DucF4ByjW4wJvguJwpsydADGOCEoShMSH4JxGOIo5oyNwIn3b-GbpJQfgxElGFOK-RisnuqoKUWtYS7k-6dwCopawS_tLFw72zVwo0srTbuF684orWBllfbQ1NCZtRlob4sW-taZxp-Co0KUXp_tcgJeHu6f54touXp8ms-WkYwJbyMpC4qLKZ8mjDPFeK5wLGKUUE1ojMMNJCkw04ghRDXSgiEmMc0RkTLN8xzTCbgavK-izBpnKuG2mRUmW8yWWT9DFKXBwjY9ezmwjbMfnfZtVhkvddmfbTufEcp4mqKU9-j1gEpnvXe62Lsxyvqy-9yVHeCLnbfLK6326E-7AbgZAB8KFK2x9Z7ZWPdLlTWq-I_-Y_k3nmuTFQ</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Laurent, Jérôme</creator><creator>Royer, Daniel</creator><creator>Prada, Claire</creator><general>Acoustical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4645-5978</orcidid><orcidid>https://orcid.org/0000-0002-2500-1099</orcidid></search><sort><creationdate>202002</creationdate><title>In-plane backward and zero group velocity guided modes in rigid and soft strips</title><author>Laurent, Jérôme ; Royer, Daniel ; Prada, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-ccf31f7975696d69bd14a4053e234115225f16e06003e0ea606c13b02cc8bbb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustics</topic><topic>Engineering Sciences</topic><topic>Mechanics</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurent, Jérôme</creatorcontrib><creatorcontrib>Royer, Daniel</creatorcontrib><creatorcontrib>Prada, Claire</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurent, Jérôme</au><au>Royer, Daniel</au><au>Prada, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-plane backward and zero group velocity guided modes in rigid and soft strips</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2020-02</date><risdate>2020</risdate><volume>147</volume><issue>2</issue><spage>1302</spage><epage>1310</epage><pages>1302-1310</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Elastic waves guided along bars of rectangular cross sections exhibit complex dispersion. This paper studies in-plane modes propagating at low frequencies in thin isotropic rectangular waveguides through experiments and numerical simulations. These modes result from the coupling at the edge between the first order shear horizontal mode SH0 of phase velocity equal to the shear velocity VT and the first order symmetrical Lamb mode S0 of phase velocity equal to the plate velocity VP. In the low frequency domain, the dispersion curves of these modes are close to those of Lamb modes propagating in plates of bulk wave velocities VP and VT. The dispersion curves of backward modes and the associated zero group velocity (ZGV) resonances are measured in a metal tape using noncontact laser ultrasonic techniques. Numerical calculations of in-plane modes in a soft ribbon of Poisson's ratio
ν
≈
0.5 confirm that, due to very low shear velocity, backward waves and ZGV modes exist at frequencies that are hundreds of times lower than ZGV resonances in metal tapes of the same geometry. The results are compared to theoretical dispersion curves calculated using the method provided in Krushynska and Meleshko [J. Acoust. Soc. Am. 129, 1324–1335 (2011)].</abstract><cop>United States</cop><pub>Acoustical Society of America</pub><pmid>32113319</pmid><doi>10.1121/10.0000760</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4645-5978</orcidid><orcidid>https://orcid.org/0000-0002-2500-1099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2020-02, Vol.147 (2), p.1302-1310 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_2369880891 |
source | AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
subjects | Acoustics Engineering Sciences Mechanics Optics Photonic Physics Solid mechanics Vibrations |
title | In-plane backward and zero group velocity guided modes in rigid and soft strips |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-plane%20backward%20and%20zero%20group%20velocity%20guided%20modes%20in%20rigid%20and%20soft%20strips&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Laurent,%20J%C3%A9r%C3%B4me&rft.date=2020-02&rft.volume=147&rft.issue=2&rft.spage=1302&rft.epage=1310&rft.pages=1302-1310&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0000760&rft_dat=%3Cproquest_hal_p%3E2369880891%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369880891&rft_id=info:pmid/32113319&rfr_iscdi=true |