Algorithms for approximate graph matching

Labeled graphs are graphs in which each node and edge has a label. The distance between two labeled graphs is considered to be the weighted sum of the costs of edit operations (insert, delete, and relabel the nodes and edges) to transform one graph to the other. The paper considers two variants of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 1995, Vol.82 (1), p.45-74
Hauptverfasser: Wang, Jason T.L., Zhang, Kaizhong, Chirn, Gung-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 1
container_start_page 45
container_title Information sciences
container_volume 82
creator Wang, Jason T.L.
Zhang, Kaizhong
Chirn, Gung-Wei
description Labeled graphs are graphs in which each node and edge has a label. The distance between two labeled graphs is considered to be the weighted sum of the costs of edit operations (insert, delete, and relabel the nodes and edges) to transform one graph to the other. The paper considers two variants of the approximate graph matching problem (AGM): Given a pattern graph P and a data graph D: 1. 1. What is the distance between P and D? 2. 2. What is the minimum distance between P and D when subgraphs can be freely removed from D? We first show that no efficient algorithm can solve either variant of the AGM unless P = NP. Then we present several heuristic algorithms leading to approximate solutions. The heuristics are based on probabilistic hill climbing and maximum flow techniques. Our experimental results involving the comparison of real and simulated data demonstrate the good performance of the algorithms presented.
doi_str_mv 10.1016/0020-0255(94)00057-I
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23674001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>002002559400057I</els_id><sourcerecordid>23674001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-b3020a96b55f4ca59a134770454d2e777d0388383e867d62aeac59434477e5143</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEuXxDzjkgBA9BNbxK74gVRWPSpW4wNlynU1rlCbBThH8e1xa9chp9_DN7M4QckXhjgKV9wAF5FAIcav5GACEymdHZERLVeSy0PSYjA7IKTmL8SNBXEk5IuNJs-yCH1brmNVdyGzfh-7br-2A2TLYfpWl1a18u7wgJ7VtIl7u5zl5f3p8m77k89fn2XQyzx2TfMgXLF2yWi6EqLmzQlvKuFLABa8KVEpVwMqSlQxLqSpZWLROaM54glBQzs7Jzc43PfK5wTiYtY8Om8a22G2iKZhUHIAmkO9AF7oYA9amD-nx8GMomG0vZhvabEMbzc1fL2aWZNd7fxudbepgW-fjQctEKYTSCXvYYZiyfnkMJjqPrcPKB3SDqTr__51fy7Vz8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23674001</pqid></control><display><type>article</type><title>Algorithms for approximate graph matching</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Jason T.L. ; Zhang, Kaizhong ; Chirn, Gung-Wei</creator><creatorcontrib>Wang, Jason T.L. ; Zhang, Kaizhong ; Chirn, Gung-Wei</creatorcontrib><description>Labeled graphs are graphs in which each node and edge has a label. The distance between two labeled graphs is considered to be the weighted sum of the costs of edit operations (insert, delete, and relabel the nodes and edges) to transform one graph to the other. The paper considers two variants of the approximate graph matching problem (AGM): Given a pattern graph P and a data graph D: 1. 1. What is the distance between P and D? 2. 2. What is the minimum distance between P and D when subgraphs can be freely removed from D? We first show that no efficient algorithm can solve either variant of the AGM unless P = NP. Then we present several heuristic algorithms leading to approximate solutions. The heuristics are based on probabilistic hill climbing and maximum flow techniques. Our experimental results involving the comparison of real and simulated data demonstrate the good performance of the algorithms presented.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/0020-0255(94)00057-I</identifier><identifier>CODEN: ISIJBC</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Pattern recognition. Digital image processing. Computational geometry ; Theoretical computing</subject><ispartof>Information sciences, 1995, Vol.82 (1), p.45-74</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-b3020a96b55f4ca59a134770454d2e777d0388383e867d62aeac59434477e5143</citedby><cites>FETCH-LOGICAL-c364t-b3020a96b55f4ca59a134770454d2e777d0388383e867d62aeac59434477e5143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0020-0255(94)00057-I$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3585579$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jason T.L.</creatorcontrib><creatorcontrib>Zhang, Kaizhong</creatorcontrib><creatorcontrib>Chirn, Gung-Wei</creatorcontrib><title>Algorithms for approximate graph matching</title><title>Information sciences</title><description>Labeled graphs are graphs in which each node and edge has a label. The distance between two labeled graphs is considered to be the weighted sum of the costs of edit operations (insert, delete, and relabel the nodes and edges) to transform one graph to the other. The paper considers two variants of the approximate graph matching problem (AGM): Given a pattern graph P and a data graph D: 1. 1. What is the distance between P and D? 2. 2. What is the minimum distance between P and D when subgraphs can be freely removed from D? We first show that no efficient algorithm can solve either variant of the AGM unless P = NP. Then we present several heuristic algorithms leading to approximate solutions. The heuristics are based on probabilistic hill climbing and maximum flow techniques. Our experimental results involving the comparison of real and simulated data demonstrate the good performance of the algorithms presented.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Theoretical computing</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEuXxDzjkgBA9BNbxK74gVRWPSpW4wNlynU1rlCbBThH8e1xa9chp9_DN7M4QckXhjgKV9wAF5FAIcav5GACEymdHZERLVeSy0PSYjA7IKTmL8SNBXEk5IuNJs-yCH1brmNVdyGzfh-7br-2A2TLYfpWl1a18u7wgJ7VtIl7u5zl5f3p8m77k89fn2XQyzx2TfMgXLF2yWi6EqLmzQlvKuFLABa8KVEpVwMqSlQxLqSpZWLROaM54glBQzs7Jzc43PfK5wTiYtY8Om8a22G2iKZhUHIAmkO9AF7oYA9amD-nx8GMomG0vZhvabEMbzc1fL2aWZNd7fxudbepgW-fjQctEKYTSCXvYYZiyfnkMJjqPrcPKB3SDqTr__51fy7Vz8Q</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Wang, Jason T.L.</creator><creator>Zhang, Kaizhong</creator><creator>Chirn, Gung-Wei</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1995</creationdate><title>Algorithms for approximate graph matching</title><author>Wang, Jason T.L. ; Zhang, Kaizhong ; Chirn, Gung-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-b3020a96b55f4ca59a134770454d2e777d0388383e867d62aeac59434477e5143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jason T.L.</creatorcontrib><creatorcontrib>Zhang, Kaizhong</creatorcontrib><creatorcontrib>Chirn, Gung-Wei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jason T.L.</au><au>Zhang, Kaizhong</au><au>Chirn, Gung-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms for approximate graph matching</atitle><jtitle>Information sciences</jtitle><date>1995</date><risdate>1995</risdate><volume>82</volume><issue>1</issue><spage>45</spage><epage>74</epage><pages>45-74</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><coden>ISIJBC</coden><abstract>Labeled graphs are graphs in which each node and edge has a label. The distance between two labeled graphs is considered to be the weighted sum of the costs of edit operations (insert, delete, and relabel the nodes and edges) to transform one graph to the other. The paper considers two variants of the approximate graph matching problem (AGM): Given a pattern graph P and a data graph D: 1. 1. What is the distance between P and D? 2. 2. What is the minimum distance between P and D when subgraphs can be freely removed from D? We first show that no efficient algorithm can solve either variant of the AGM unless P = NP. Then we present several heuristic algorithms leading to approximate solutions. The heuristics are based on probabilistic hill climbing and maximum flow techniques. Our experimental results involving the comparison of real and simulated data demonstrate the good performance of the algorithms presented.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0020-0255(94)00057-I</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 1995, Vol.82 (1), p.45-74
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_23674001
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Information retrieval. Graph
Pattern recognition. Digital image processing. Computational geometry
Theoretical computing
title Algorithms for approximate graph matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20for%20approximate%20graph%20matching&rft.jtitle=Information%20sciences&rft.au=Wang,%20Jason%20T.L.&rft.date=1995&rft.volume=82&rft.issue=1&rft.spage=45&rft.epage=74&rft.pages=45-74&rft.issn=0020-0255&rft.eissn=1872-6291&rft.coden=ISIJBC&rft_id=info:doi/10.1016/0020-0255(94)00057-I&rft_dat=%3Cproquest_cross%3E23674001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23674001&rft_id=info:pmid/&rft_els_id=002002559400057I&rfr_iscdi=true