Knowledge-based systems and neural networks for clinical decision making
This paper presents two knowledge-based systems (KBS) and an artificial neural network (ANN) system for clinical decision-making in electrocardiogram (ECG) signal interpretation. Among these systems, a KBS contains “shallow” knowledge in declarative forms and employs fuzzy set theory to deal with va...
Gespeichert in:
Veröffentlicht in: | Control engineering practice 1995, Vol.3 (7), p.967-975 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 975 |
---|---|
container_issue | 7 |
container_start_page | 967 |
container_title | Control engineering practice |
container_volume | 3 |
creator | Jones, N.B Wang, J.T Sehmi, A.S de Bono, D.P |
description | This paper presents two knowledge-based systems (KBS) and an artificial neural network (ANN) system for clinical decision-making in electrocardiogram (ECG) signal interpretation. Among these systems, a KBS contains “shallow” knowledge in declarative forms and employs fuzzy set theory to deal with vagueness in the encoded knowledge and imprecise ECG measurements. The other KBS uses “deep” knowledge encoded in a qualitative simulation model for ECG simulation and interpretation. An experimental ANN was constructed to test its usefulness for ECG interpretation. Preliminary results show that each system has its own usefulness in ECG interpretation and simulation. Brief comparisons are also given in the paper. |
doi_str_mv | 10.1016/0967-0661(95)00079-A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23662786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>096706619500079A</els_id><sourcerecordid>16941823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-2d06cb07523bec252742de063760767df53789392259f7b4c61827fb5da568853</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKv_wMOeRA-rSXaTbC5CEbViwYueQzaZLbHbpCZbS_-9qRWPenowvPdm5kPonOBrggm_wZKLEnNOLiW7whgLWU4O0Ig0oiq5rOQhGv1ajtFJSu84x6QkIzR99mHTg51D2eoEtkjbNMAyFdrbwsM66j7LsAlxkYouxML0zjuTpxaMSy74YqkXzs9P0VGn-wRnPzpGbw_3r3fTcvby-HQ3mZWm4nwoqcXctFgwWrVgKKOiphYwrwTHggvbsUo0-WRKmexEWxtOGiq6llnNeNOwaowu9r2rGD7WkAa1dMlA32sPYZ0UzWuoaPi_xgygzt1VNtZ7o4khpQidWkW31HGrCFY7vmoHT-3gKcnUN181ybHbfQzyt58OokrGgTdgXQQzKBvc3wVfiMyAxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16941823</pqid></control><display><type>article</type><title>Knowledge-based systems and neural networks for clinical decision making</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jones, N.B ; Wang, J.T ; Sehmi, A.S ; de Bono, D.P</creator><creatorcontrib>Jones, N.B ; Wang, J.T ; Sehmi, A.S ; de Bono, D.P</creatorcontrib><description>This paper presents two knowledge-based systems (KBS) and an artificial neural network (ANN) system for clinical decision-making in electrocardiogram (ECG) signal interpretation. Among these systems, a KBS contains “shallow” knowledge in declarative forms and employs fuzzy set theory to deal with vagueness in the encoded knowledge and imprecise ECG measurements. The other KBS uses “deep” knowledge encoded in a qualitative simulation model for ECG simulation and interpretation. An experimental ANN was constructed to test its usefulness for ECG interpretation. Preliminary results show that each system has its own usefulness in ECG interpretation and simulation. Brief comparisons are also given in the paper.</description><identifier>ISSN: 0967-0661</identifier><identifier>EISSN: 1873-6939</identifier><identifier>DOI: 10.1016/0967-0661(95)00079-A</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>artificial neural network ; ECG interpretation and simulation ; fuzzy set theory ; Knowledge-based systems</subject><ispartof>Control engineering practice, 1995, Vol.3 (7), p.967-975</ispartof><rights>1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-2d06cb07523bec252742de063760767df53789392259f7b4c61827fb5da568853</citedby><cites>FETCH-LOGICAL-c366t-2d06cb07523bec252742de063760767df53789392259f7b4c61827fb5da568853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0967-0661(95)00079-A$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jones, N.B</creatorcontrib><creatorcontrib>Wang, J.T</creatorcontrib><creatorcontrib>Sehmi, A.S</creatorcontrib><creatorcontrib>de Bono, D.P</creatorcontrib><title>Knowledge-based systems and neural networks for clinical decision making</title><title>Control engineering practice</title><description>This paper presents two knowledge-based systems (KBS) and an artificial neural network (ANN) system for clinical decision-making in electrocardiogram (ECG) signal interpretation. Among these systems, a KBS contains “shallow” knowledge in declarative forms and employs fuzzy set theory to deal with vagueness in the encoded knowledge and imprecise ECG measurements. The other KBS uses “deep” knowledge encoded in a qualitative simulation model for ECG simulation and interpretation. An experimental ANN was constructed to test its usefulness for ECG interpretation. Preliminary results show that each system has its own usefulness in ECG interpretation and simulation. Brief comparisons are also given in the paper.</description><subject>artificial neural network</subject><subject>ECG interpretation and simulation</subject><subject>fuzzy set theory</subject><subject>Knowledge-based systems</subject><issn>0967-0661</issn><issn>1873-6939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKv_wMOeRA-rSXaTbC5CEbViwYueQzaZLbHbpCZbS_-9qRWPenowvPdm5kPonOBrggm_wZKLEnNOLiW7whgLWU4O0Ig0oiq5rOQhGv1ajtFJSu84x6QkIzR99mHTg51D2eoEtkjbNMAyFdrbwsM66j7LsAlxkYouxML0zjuTpxaMSy74YqkXzs9P0VGn-wRnPzpGbw_3r3fTcvby-HQ3mZWm4nwoqcXctFgwWrVgKKOiphYwrwTHggvbsUo0-WRKmexEWxtOGiq6llnNeNOwaowu9r2rGD7WkAa1dMlA32sPYZ0UzWuoaPi_xgygzt1VNtZ7o4khpQidWkW31HGrCFY7vmoHT-3gKcnUN181ybHbfQzyt58OokrGgTdgXQQzKBvc3wVfiMyAxw</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Jones, N.B</creator><creator>Wang, J.T</creator><creator>Sehmi, A.S</creator><creator>de Bono, D.P</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1995</creationdate><title>Knowledge-based systems and neural networks for clinical decision making</title><author>Jones, N.B ; Wang, J.T ; Sehmi, A.S ; de Bono, D.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-2d06cb07523bec252742de063760767df53789392259f7b4c61827fb5da568853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>artificial neural network</topic><topic>ECG interpretation and simulation</topic><topic>fuzzy set theory</topic><topic>Knowledge-based systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, N.B</creatorcontrib><creatorcontrib>Wang, J.T</creatorcontrib><creatorcontrib>Sehmi, A.S</creatorcontrib><creatorcontrib>de Bono, D.P</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Control engineering practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, N.B</au><au>Wang, J.T</au><au>Sehmi, A.S</au><au>de Bono, D.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge-based systems and neural networks for clinical decision making</atitle><jtitle>Control engineering practice</jtitle><date>1995</date><risdate>1995</risdate><volume>3</volume><issue>7</issue><spage>967</spage><epage>975</epage><pages>967-975</pages><issn>0967-0661</issn><eissn>1873-6939</eissn><abstract>This paper presents two knowledge-based systems (KBS) and an artificial neural network (ANN) system for clinical decision-making in electrocardiogram (ECG) signal interpretation. Among these systems, a KBS contains “shallow” knowledge in declarative forms and employs fuzzy set theory to deal with vagueness in the encoded knowledge and imprecise ECG measurements. The other KBS uses “deep” knowledge encoded in a qualitative simulation model for ECG simulation and interpretation. An experimental ANN was constructed to test its usefulness for ECG interpretation. Preliminary results show that each system has its own usefulness in ECG interpretation and simulation. Brief comparisons are also given in the paper.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/0967-0661(95)00079-A</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-0661 |
ispartof | Control engineering practice, 1995, Vol.3 (7), p.967-975 |
issn | 0967-0661 1873-6939 |
language | eng |
recordid | cdi_proquest_miscellaneous_23662786 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | artificial neural network ECG interpretation and simulation fuzzy set theory Knowledge-based systems |
title | Knowledge-based systems and neural networks for clinical decision making |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge-based%20systems%20and%20neural%20networks%20for%20clinical%20decision%20making&rft.jtitle=Control%20engineering%20practice&rft.au=Jones,%20N.B&rft.date=1995&rft.volume=3&rft.issue=7&rft.spage=967&rft.epage=975&rft.pages=967-975&rft.issn=0967-0661&rft.eissn=1873-6939&rft_id=info:doi/10.1016/0967-0661(95)00079-A&rft_dat=%3Cproquest_cross%3E16941823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16941823&rft_id=info:pmid/&rft_els_id=096706619500079A&rfr_iscdi=true |