Knowledge-based systems and neural networks for clinical decision making

This paper presents two knowledge-based systems (KBS) and an artificial neural network (ANN) system for clinical decision-making in electrocardiogram (ECG) signal interpretation. Among these systems, a KBS contains “shallow” knowledge in declarative forms and employs fuzzy set theory to deal with va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control engineering practice 1995, Vol.3 (7), p.967-975
Hauptverfasser: Jones, N.B, Wang, J.T, Sehmi, A.S, de Bono, D.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue 7
container_start_page 967
container_title Control engineering practice
container_volume 3
creator Jones, N.B
Wang, J.T
Sehmi, A.S
de Bono, D.P
description This paper presents two knowledge-based systems (KBS) and an artificial neural network (ANN) system for clinical decision-making in electrocardiogram (ECG) signal interpretation. Among these systems, a KBS contains “shallow” knowledge in declarative forms and employs fuzzy set theory to deal with vagueness in the encoded knowledge and imprecise ECG measurements. The other KBS uses “deep” knowledge encoded in a qualitative simulation model for ECG simulation and interpretation. An experimental ANN was constructed to test its usefulness for ECG interpretation. Preliminary results show that each system has its own usefulness in ECG interpretation and simulation. Brief comparisons are also given in the paper.
doi_str_mv 10.1016/0967-0661(95)00079-A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23662786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>096706619500079A</els_id><sourcerecordid>16941823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-2d06cb07523bec252742de063760767df53789392259f7b4c61827fb5da568853</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKv_wMOeRA-rSXaTbC5CEbViwYueQzaZLbHbpCZbS_-9qRWPenowvPdm5kPonOBrggm_wZKLEnNOLiW7whgLWU4O0Ig0oiq5rOQhGv1ajtFJSu84x6QkIzR99mHTg51D2eoEtkjbNMAyFdrbwsM66j7LsAlxkYouxML0zjuTpxaMSy74YqkXzs9P0VGn-wRnPzpGbw_3r3fTcvby-HQ3mZWm4nwoqcXctFgwWrVgKKOiphYwrwTHggvbsUo0-WRKmexEWxtOGiq6llnNeNOwaowu9r2rGD7WkAa1dMlA32sPYZ0UzWuoaPi_xgygzt1VNtZ7o4khpQidWkW31HGrCFY7vmoHT-3gKcnUN181ybHbfQzyt58OokrGgTdgXQQzKBvc3wVfiMyAxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16941823</pqid></control><display><type>article</type><title>Knowledge-based systems and neural networks for clinical decision making</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jones, N.B ; Wang, J.T ; Sehmi, A.S ; de Bono, D.P</creator><creatorcontrib>Jones, N.B ; Wang, J.T ; Sehmi, A.S ; de Bono, D.P</creatorcontrib><description>This paper presents two knowledge-based systems (KBS) and an artificial neural network (ANN) system for clinical decision-making in electrocardiogram (ECG) signal interpretation. Among these systems, a KBS contains “shallow” knowledge in declarative forms and employs fuzzy set theory to deal with vagueness in the encoded knowledge and imprecise ECG measurements. The other KBS uses “deep” knowledge encoded in a qualitative simulation model for ECG simulation and interpretation. An experimental ANN was constructed to test its usefulness for ECG interpretation. Preliminary results show that each system has its own usefulness in ECG interpretation and simulation. Brief comparisons are also given in the paper.</description><identifier>ISSN: 0967-0661</identifier><identifier>EISSN: 1873-6939</identifier><identifier>DOI: 10.1016/0967-0661(95)00079-A</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>artificial neural network ; ECG interpretation and simulation ; fuzzy set theory ; Knowledge-based systems</subject><ispartof>Control engineering practice, 1995, Vol.3 (7), p.967-975</ispartof><rights>1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-2d06cb07523bec252742de063760767df53789392259f7b4c61827fb5da568853</citedby><cites>FETCH-LOGICAL-c366t-2d06cb07523bec252742de063760767df53789392259f7b4c61827fb5da568853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0967-0661(95)00079-A$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jones, N.B</creatorcontrib><creatorcontrib>Wang, J.T</creatorcontrib><creatorcontrib>Sehmi, A.S</creatorcontrib><creatorcontrib>de Bono, D.P</creatorcontrib><title>Knowledge-based systems and neural networks for clinical decision making</title><title>Control engineering practice</title><description>This paper presents two knowledge-based systems (KBS) and an artificial neural network (ANN) system for clinical decision-making in electrocardiogram (ECG) signal interpretation. Among these systems, a KBS contains “shallow” knowledge in declarative forms and employs fuzzy set theory to deal with vagueness in the encoded knowledge and imprecise ECG measurements. The other KBS uses “deep” knowledge encoded in a qualitative simulation model for ECG simulation and interpretation. An experimental ANN was constructed to test its usefulness for ECG interpretation. Preliminary results show that each system has its own usefulness in ECG interpretation and simulation. Brief comparisons are also given in the paper.</description><subject>artificial neural network</subject><subject>ECG interpretation and simulation</subject><subject>fuzzy set theory</subject><subject>Knowledge-based systems</subject><issn>0967-0661</issn><issn>1873-6939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKv_wMOeRA-rSXaTbC5CEbViwYueQzaZLbHbpCZbS_-9qRWPenowvPdm5kPonOBrggm_wZKLEnNOLiW7whgLWU4O0Ig0oiq5rOQhGv1ajtFJSu84x6QkIzR99mHTg51D2eoEtkjbNMAyFdrbwsM66j7LsAlxkYouxML0zjuTpxaMSy74YqkXzs9P0VGn-wRnPzpGbw_3r3fTcvby-HQ3mZWm4nwoqcXctFgwWrVgKKOiphYwrwTHggvbsUo0-WRKmexEWxtOGiq6llnNeNOwaowu9r2rGD7WkAa1dMlA32sPYZ0UzWuoaPi_xgygzt1VNtZ7o4khpQidWkW31HGrCFY7vmoHT-3gKcnUN181ybHbfQzyt58OokrGgTdgXQQzKBvc3wVfiMyAxw</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Jones, N.B</creator><creator>Wang, J.T</creator><creator>Sehmi, A.S</creator><creator>de Bono, D.P</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1995</creationdate><title>Knowledge-based systems and neural networks for clinical decision making</title><author>Jones, N.B ; Wang, J.T ; Sehmi, A.S ; de Bono, D.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-2d06cb07523bec252742de063760767df53789392259f7b4c61827fb5da568853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>artificial neural network</topic><topic>ECG interpretation and simulation</topic><topic>fuzzy set theory</topic><topic>Knowledge-based systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, N.B</creatorcontrib><creatorcontrib>Wang, J.T</creatorcontrib><creatorcontrib>Sehmi, A.S</creatorcontrib><creatorcontrib>de Bono, D.P</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Control engineering practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, N.B</au><au>Wang, J.T</au><au>Sehmi, A.S</au><au>de Bono, D.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge-based systems and neural networks for clinical decision making</atitle><jtitle>Control engineering practice</jtitle><date>1995</date><risdate>1995</risdate><volume>3</volume><issue>7</issue><spage>967</spage><epage>975</epage><pages>967-975</pages><issn>0967-0661</issn><eissn>1873-6939</eissn><abstract>This paper presents two knowledge-based systems (KBS) and an artificial neural network (ANN) system for clinical decision-making in electrocardiogram (ECG) signal interpretation. Among these systems, a KBS contains “shallow” knowledge in declarative forms and employs fuzzy set theory to deal with vagueness in the encoded knowledge and imprecise ECG measurements. The other KBS uses “deep” knowledge encoded in a qualitative simulation model for ECG simulation and interpretation. An experimental ANN was constructed to test its usefulness for ECG interpretation. Preliminary results show that each system has its own usefulness in ECG interpretation and simulation. Brief comparisons are also given in the paper.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/0967-0661(95)00079-A</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-0661
ispartof Control engineering practice, 1995, Vol.3 (7), p.967-975
issn 0967-0661
1873-6939
language eng
recordid cdi_proquest_miscellaneous_23662786
source ScienceDirect Journals (5 years ago - present)
subjects artificial neural network
ECG interpretation and simulation
fuzzy set theory
Knowledge-based systems
title Knowledge-based systems and neural networks for clinical decision making
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge-based%20systems%20and%20neural%20networks%20for%20clinical%20decision%20making&rft.jtitle=Control%20engineering%20practice&rft.au=Jones,%20N.B&rft.date=1995&rft.volume=3&rft.issue=7&rft.spage=967&rft.epage=975&rft.pages=967-975&rft.issn=0967-0661&rft.eissn=1873-6939&rft_id=info:doi/10.1016/0967-0661(95)00079-A&rft_dat=%3Cproquest_cross%3E16941823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16941823&rft_id=info:pmid/&rft_els_id=096706619500079A&rfr_iscdi=true