The novel bZIP transcription factor Fpo1 negatively regulates perithecial development by modulating carbon metabolism in the ascomycete fungus Fusarium graminearum

Summary Fungal sexual reproduction requires complex cellular differentiation processes of hyphal cells. The plant pathogenic fungus Fusarium graminearum produces fruiting bodies called perithecia via sexual reproduction, and perithecia forcibly discharge ascospores into the air for disease initiatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2020-07, Vol.22 (7), p.2596-2612
Hauptverfasser: Shin, Jiyoung, Bui, Duc‐Cuong, Kim, Sieun, Jung, So Yun, Nam, Hye Jin, Lim, Jae Yun, Choi, Gyung Ja, Lee, Yin‐Won, Kim, Jung‐Eun, Son, Hokyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2612
container_issue 7
container_start_page 2596
container_title Environmental microbiology
container_volume 22
creator Shin, Jiyoung
Bui, Duc‐Cuong
Kim, Sieun
Jung, So Yun
Nam, Hye Jin
Lim, Jae Yun
Choi, Gyung Ja
Lee, Yin‐Won
Kim, Jung‐Eun
Son, Hokyoung
description Summary Fungal sexual reproduction requires complex cellular differentiation processes of hyphal cells. The plant pathogenic fungus Fusarium graminearum produces fruiting bodies called perithecia via sexual reproduction, and perithecia forcibly discharge ascospores into the air for disease initiation and propagation. Lipid metabolism and accumulation are closely related to perithecium formation, yet the molecular mechanisms that regulate these processes are largely unknown. Here, we report that a novel fungal specific bZIP transcription factor, F. graminearum perithecium overproducing 1 (Fpo1), plays a role as a global transcriptional repressor during perithecium production and maturation in F. graminearum. Deletion of FPO1 resulted in reduced vegetative growth, asexual sporulation and virulence and overproduced perithecium, which reached maturity earlier, compared with the wild type. Intriguingly, the hyphae of the fpo1 mutant accumulated excess lipids during perithecium production. Using a combination of molecular biological, transcriptomic and biochemical approaches, we demonstrate that repression of FPO1 after sexual induction leads to reprogramming of carbon metabolism, particularly fatty acid production, which affects sexual reproduction of this fungus. This is the first report of a perithecium‐overproducing F. graminearum mutant, and the findings provide comprehensive insight into the role of modulation of carbon metabolism in the sexual reproduction of fungi.
doi_str_mv 10.1111/1462-2920.14960
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2365211500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422948304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2860-4c44ad46fa68b2122b8ae2b95102fa684b4e12df0a6ea94047d81a8a69fa4e5e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiNERUvhzA1Z4sJlqe042eSIqi6sVNQe2gsXa-JMUlexHfxRlN_DH8Vhyx644Is942cejfQWxTtGP7F8Lpio-Ya3PJeiremL4uzYeXl8M35avA7hkVK2Lbf0VXFackap4Oys-HX3gMS6J5xI931_S6IHG5TXc9TOkgFUdJ7sZseIxRGizuBCPI5pgoiBzOh1fEClYSI95k83G7SRdAsxrl8hbUeiwHfZZjBC5yYdDNGW5DECQTmzKIxIhmTHFMguBfA6GTJ6MNoi-GTeFCcDTAHfPt_nxf3u6u7y6-b65sv-8vP1RvGmphuhhIBe1APUTccZ510DyLu2YpSvPdEJZLwfKNQIraBi2zcMGqjbAQRWWJ4XHw_e2bsfCUOURgeF0wQWXQqSl3XFGasozeiHf9BHl7zN20kuOG9FU1KRqYsDpbwLweMgZ68N-EUyKtf85JqQXNOSf_LLE--fvakz2B_5v4FloDoAP_WEy_988urb_iD-Db4UqAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422948304</pqid></control><display><type>article</type><title>The novel bZIP transcription factor Fpo1 negatively regulates perithecial development by modulating carbon metabolism in the ascomycete fungus Fusarium graminearum</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shin, Jiyoung ; Bui, Duc‐Cuong ; Kim, Sieun ; Jung, So Yun ; Nam, Hye Jin ; Lim, Jae Yun ; Choi, Gyung Ja ; Lee, Yin‐Won ; Kim, Jung‐Eun ; Son, Hokyoung</creator><creatorcontrib>Shin, Jiyoung ; Bui, Duc‐Cuong ; Kim, Sieun ; Jung, So Yun ; Nam, Hye Jin ; Lim, Jae Yun ; Choi, Gyung Ja ; Lee, Yin‐Won ; Kim, Jung‐Eun ; Son, Hokyoung</creatorcontrib><description>Summary Fungal sexual reproduction requires complex cellular differentiation processes of hyphal cells. The plant pathogenic fungus Fusarium graminearum produces fruiting bodies called perithecia via sexual reproduction, and perithecia forcibly discharge ascospores into the air for disease initiation and propagation. Lipid metabolism and accumulation are closely related to perithecium formation, yet the molecular mechanisms that regulate these processes are largely unknown. Here, we report that a novel fungal specific bZIP transcription factor, F. graminearum perithecium overproducing 1 (Fpo1), plays a role as a global transcriptional repressor during perithecium production and maturation in F. graminearum. Deletion of FPO1 resulted in reduced vegetative growth, asexual sporulation and virulence and overproduced perithecium, which reached maturity earlier, compared with the wild type. Intriguingly, the hyphae of the fpo1 mutant accumulated excess lipids during perithecium production. Using a combination of molecular biological, transcriptomic and biochemical approaches, we demonstrate that repression of FPO1 after sexual induction leads to reprogramming of carbon metabolism, particularly fatty acid production, which affects sexual reproduction of this fungus. This is the first report of a perithecium‐overproducing F. graminearum mutant, and the findings provide comprehensive insight into the role of modulation of carbon metabolism in the sexual reproduction of fungi.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.14960</identifier><identifier>PMID: 32100421</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acid production ; Ascospores ; Basic-Leucine Zipper Transcription Factors - genetics ; Basic-Leucine Zipper Transcription Factors - metabolism ; Carbon ; Carbon - metabolism ; Cell differentiation ; Differentiation (biology) ; Fatty acids ; Fruit bodies ; Fruiting Bodies, Fungal - genetics ; Fruiting Bodies, Fungal - growth &amp; development ; Fruiting Bodies, Fungal - metabolism ; Fungal Proteins - genetics ; Fungi ; Fusarium - genetics ; Fusarium - growth &amp; development ; Fusarium - metabolism ; Fusarium graminearum ; Gene Expression Regulation, Fungal - genetics ; Hyphae ; Hyphae - growth &amp; development ; Hyphae - metabolism ; Lipid metabolism ; Lipid Metabolism - genetics ; Lipids ; Metabolism ; Molecular modelling ; Mutants ; Pathogens ; Perithecia ; Plant cells ; Plant Diseases - microbiology ; Propagation ; Reproduction ; Reproduction (biology) ; Sexual reproduction ; Spores, Fungal - metabolism ; Sporulation ; Transcription ; Transcription factors ; Virulence</subject><ispartof>Environmental microbiology, 2020-07, Vol.22 (7), p.2596-2612</ispartof><rights>2020 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2020 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2860-4c44ad46fa68b2122b8ae2b95102fa684b4e12df0a6ea94047d81a8a69fa4e5e3</citedby><cites>FETCH-LOGICAL-c2860-4c44ad46fa68b2122b8ae2b95102fa684b4e12df0a6ea94047d81a8a69fa4e5e3</cites><orcidid>0000-0001-5080-7951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.14960$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.14960$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32100421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Jiyoung</creatorcontrib><creatorcontrib>Bui, Duc‐Cuong</creatorcontrib><creatorcontrib>Kim, Sieun</creatorcontrib><creatorcontrib>Jung, So Yun</creatorcontrib><creatorcontrib>Nam, Hye Jin</creatorcontrib><creatorcontrib>Lim, Jae Yun</creatorcontrib><creatorcontrib>Choi, Gyung Ja</creatorcontrib><creatorcontrib>Lee, Yin‐Won</creatorcontrib><creatorcontrib>Kim, Jung‐Eun</creatorcontrib><creatorcontrib>Son, Hokyoung</creatorcontrib><title>The novel bZIP transcription factor Fpo1 negatively regulates perithecial development by modulating carbon metabolism in the ascomycete fungus Fusarium graminearum</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Fungal sexual reproduction requires complex cellular differentiation processes of hyphal cells. The plant pathogenic fungus Fusarium graminearum produces fruiting bodies called perithecia via sexual reproduction, and perithecia forcibly discharge ascospores into the air for disease initiation and propagation. Lipid metabolism and accumulation are closely related to perithecium formation, yet the molecular mechanisms that regulate these processes are largely unknown. Here, we report that a novel fungal specific bZIP transcription factor, F. graminearum perithecium overproducing 1 (Fpo1), plays a role as a global transcriptional repressor during perithecium production and maturation in F. graminearum. Deletion of FPO1 resulted in reduced vegetative growth, asexual sporulation and virulence and overproduced perithecium, which reached maturity earlier, compared with the wild type. Intriguingly, the hyphae of the fpo1 mutant accumulated excess lipids during perithecium production. Using a combination of molecular biological, transcriptomic and biochemical approaches, we demonstrate that repression of FPO1 after sexual induction leads to reprogramming of carbon metabolism, particularly fatty acid production, which affects sexual reproduction of this fungus. This is the first report of a perithecium‐overproducing F. graminearum mutant, and the findings provide comprehensive insight into the role of modulation of carbon metabolism in the sexual reproduction of fungi.</description><subject>Acid production</subject><subject>Ascospores</subject><subject>Basic-Leucine Zipper Transcription Factors - genetics</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Cell differentiation</subject><subject>Differentiation (biology)</subject><subject>Fatty acids</subject><subject>Fruit bodies</subject><subject>Fruiting Bodies, Fungal - genetics</subject><subject>Fruiting Bodies, Fungal - growth &amp; development</subject><subject>Fruiting Bodies, Fungal - metabolism</subject><subject>Fungal Proteins - genetics</subject><subject>Fungi</subject><subject>Fusarium - genetics</subject><subject>Fusarium - growth &amp; development</subject><subject>Fusarium - metabolism</subject><subject>Fusarium graminearum</subject><subject>Gene Expression Regulation, Fungal - genetics</subject><subject>Hyphae</subject><subject>Hyphae - growth &amp; development</subject><subject>Hyphae - metabolism</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Molecular modelling</subject><subject>Mutants</subject><subject>Pathogens</subject><subject>Perithecia</subject><subject>Plant cells</subject><subject>Plant Diseases - microbiology</subject><subject>Propagation</subject><subject>Reproduction</subject><subject>Reproduction (biology)</subject><subject>Sexual reproduction</subject><subject>Spores, Fungal - metabolism</subject><subject>Sporulation</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Virulence</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiNERUvhzA1Z4sJlqe042eSIqi6sVNQe2gsXa-JMUlexHfxRlN_DH8Vhyx644Is942cejfQWxTtGP7F8Lpio-Ya3PJeiremL4uzYeXl8M35avA7hkVK2Lbf0VXFackap4Oys-HX3gMS6J5xI931_S6IHG5TXc9TOkgFUdJ7sZseIxRGizuBCPI5pgoiBzOh1fEClYSI95k83G7SRdAsxrl8hbUeiwHfZZjBC5yYdDNGW5DECQTmzKIxIhmTHFMguBfA6GTJ6MNoi-GTeFCcDTAHfPt_nxf3u6u7y6-b65sv-8vP1RvGmphuhhIBe1APUTccZ510DyLu2YpSvPdEJZLwfKNQIraBi2zcMGqjbAQRWWJ4XHw_e2bsfCUOURgeF0wQWXQqSl3XFGasozeiHf9BHl7zN20kuOG9FU1KRqYsDpbwLweMgZ68N-EUyKtf85JqQXNOSf_LLE--fvakz2B_5v4FloDoAP_WEy_988urb_iD-Db4UqAA</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Shin, Jiyoung</creator><creator>Bui, Duc‐Cuong</creator><creator>Kim, Sieun</creator><creator>Jung, So Yun</creator><creator>Nam, Hye Jin</creator><creator>Lim, Jae Yun</creator><creator>Choi, Gyung Ja</creator><creator>Lee, Yin‐Won</creator><creator>Kim, Jung‐Eun</creator><creator>Son, Hokyoung</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5080-7951</orcidid></search><sort><creationdate>202007</creationdate><title>The novel bZIP transcription factor Fpo1 negatively regulates perithecial development by modulating carbon metabolism in the ascomycete fungus Fusarium graminearum</title><author>Shin, Jiyoung ; Bui, Duc‐Cuong ; Kim, Sieun ; Jung, So Yun ; Nam, Hye Jin ; Lim, Jae Yun ; Choi, Gyung Ja ; Lee, Yin‐Won ; Kim, Jung‐Eun ; Son, Hokyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2860-4c44ad46fa68b2122b8ae2b95102fa684b4e12df0a6ea94047d81a8a69fa4e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acid production</topic><topic>Ascospores</topic><topic>Basic-Leucine Zipper Transcription Factors - genetics</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Cell differentiation</topic><topic>Differentiation (biology)</topic><topic>Fatty acids</topic><topic>Fruit bodies</topic><topic>Fruiting Bodies, Fungal - genetics</topic><topic>Fruiting Bodies, Fungal - growth &amp; development</topic><topic>Fruiting Bodies, Fungal - metabolism</topic><topic>Fungal Proteins - genetics</topic><topic>Fungi</topic><topic>Fusarium - genetics</topic><topic>Fusarium - growth &amp; development</topic><topic>Fusarium - metabolism</topic><topic>Fusarium graminearum</topic><topic>Gene Expression Regulation, Fungal - genetics</topic><topic>Hyphae</topic><topic>Hyphae - growth &amp; development</topic><topic>Hyphae - metabolism</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Molecular modelling</topic><topic>Mutants</topic><topic>Pathogens</topic><topic>Perithecia</topic><topic>Plant cells</topic><topic>Plant Diseases - microbiology</topic><topic>Propagation</topic><topic>Reproduction</topic><topic>Reproduction (biology)</topic><topic>Sexual reproduction</topic><topic>Spores, Fungal - metabolism</topic><topic>Sporulation</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Jiyoung</creatorcontrib><creatorcontrib>Bui, Duc‐Cuong</creatorcontrib><creatorcontrib>Kim, Sieun</creatorcontrib><creatorcontrib>Jung, So Yun</creatorcontrib><creatorcontrib>Nam, Hye Jin</creatorcontrib><creatorcontrib>Lim, Jae Yun</creatorcontrib><creatorcontrib>Choi, Gyung Ja</creatorcontrib><creatorcontrib>Lee, Yin‐Won</creatorcontrib><creatorcontrib>Kim, Jung‐Eun</creatorcontrib><creatorcontrib>Son, Hokyoung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Jiyoung</au><au>Bui, Duc‐Cuong</au><au>Kim, Sieun</au><au>Jung, So Yun</au><au>Nam, Hye Jin</au><au>Lim, Jae Yun</au><au>Choi, Gyung Ja</au><au>Lee, Yin‐Won</au><au>Kim, Jung‐Eun</au><au>Son, Hokyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The novel bZIP transcription factor Fpo1 negatively regulates perithecial development by modulating carbon metabolism in the ascomycete fungus Fusarium graminearum</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2020-07</date><risdate>2020</risdate><volume>22</volume><issue>7</issue><spage>2596</spage><epage>2612</epage><pages>2596-2612</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Fungal sexual reproduction requires complex cellular differentiation processes of hyphal cells. The plant pathogenic fungus Fusarium graminearum produces fruiting bodies called perithecia via sexual reproduction, and perithecia forcibly discharge ascospores into the air for disease initiation and propagation. Lipid metabolism and accumulation are closely related to perithecium formation, yet the molecular mechanisms that regulate these processes are largely unknown. Here, we report that a novel fungal specific bZIP transcription factor, F. graminearum perithecium overproducing 1 (Fpo1), plays a role as a global transcriptional repressor during perithecium production and maturation in F. graminearum. Deletion of FPO1 resulted in reduced vegetative growth, asexual sporulation and virulence and overproduced perithecium, which reached maturity earlier, compared with the wild type. Intriguingly, the hyphae of the fpo1 mutant accumulated excess lipids during perithecium production. Using a combination of molecular biological, transcriptomic and biochemical approaches, we demonstrate that repression of FPO1 after sexual induction leads to reprogramming of carbon metabolism, particularly fatty acid production, which affects sexual reproduction of this fungus. This is the first report of a perithecium‐overproducing F. graminearum mutant, and the findings provide comprehensive insight into the role of modulation of carbon metabolism in the sexual reproduction of fungi.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32100421</pmid><doi>10.1111/1462-2920.14960</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5080-7951</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2020-07, Vol.22 (7), p.2596-2612
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_2365211500
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acid production
Ascospores
Basic-Leucine Zipper Transcription Factors - genetics
Basic-Leucine Zipper Transcription Factors - metabolism
Carbon
Carbon - metabolism
Cell differentiation
Differentiation (biology)
Fatty acids
Fruit bodies
Fruiting Bodies, Fungal - genetics
Fruiting Bodies, Fungal - growth & development
Fruiting Bodies, Fungal - metabolism
Fungal Proteins - genetics
Fungi
Fusarium - genetics
Fusarium - growth & development
Fusarium - metabolism
Fusarium graminearum
Gene Expression Regulation, Fungal - genetics
Hyphae
Hyphae - growth & development
Hyphae - metabolism
Lipid metabolism
Lipid Metabolism - genetics
Lipids
Metabolism
Molecular modelling
Mutants
Pathogens
Perithecia
Plant cells
Plant Diseases - microbiology
Propagation
Reproduction
Reproduction (biology)
Sexual reproduction
Spores, Fungal - metabolism
Sporulation
Transcription
Transcription factors
Virulence
title The novel bZIP transcription factor Fpo1 negatively regulates perithecial development by modulating carbon metabolism in the ascomycete fungus Fusarium graminearum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20novel%20bZIP%20transcription%20factor%20Fpo1%20negatively%20regulates%20perithecial%20development%20by%20modulating%20carbon%20metabolism%20in%20the%20ascomycete%20fungus%20Fusarium%20graminearum&rft.jtitle=Environmental%20microbiology&rft.au=Shin,%20Jiyoung&rft.date=2020-07&rft.volume=22&rft.issue=7&rft.spage=2596&rft.epage=2612&rft.pages=2596-2612&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.14960&rft_dat=%3Cproquest_cross%3E2422948304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422948304&rft_id=info:pmid/32100421&rfr_iscdi=true