Doxorubicin‐loaded polyphosphate glass microspheres for transarterial chemoembolization

The standard of care for intermediate stage hepatocellular carcinoma is transarterial chemoembolization (TACE). Drug‐eluting bead TACE (DEB‐TACE) has emerged as a leading form of TACE, as it uses highly calibrated microspheres to deliver consistent embolization and controlled drug release to the tum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2020-08, Vol.108 (6), p.2621-2632
Hauptverfasser: Nix, Hayden P., Momeni, Arash, Chevrier, Daniel M., Whitman, Catherine A., Filiaggi, Mark J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2632
container_issue 6
container_start_page 2621
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 108
creator Nix, Hayden P.
Momeni, Arash
Chevrier, Daniel M.
Whitman, Catherine A.
Filiaggi, Mark J.
description The standard of care for intermediate stage hepatocellular carcinoma is transarterial chemoembolization (TACE). Drug‐eluting bead TACE (DEB‐TACE) has emerged as a leading form of TACE, as it uses highly calibrated microspheres to deliver consistent embolization and controlled drug release to the tumor microenvironment. We report here on doxorubicin (DOX)‐loaded polyphosphate glass microspheres (PGM) as a novel resorbable, radiopaque, preloaded DEB‐TACE platform. Coacervate composed of polyphosphate chains complexed with Ba2+, Ca2+, and Cu2+ can be loaded with DOX prior to PGM synthesis, with PGM production achieved using a water‐in‐oil emulsion technique at room temperature yielding highly spherical particles in clinically relevant size fractions. In vitro, DOX release was found to be linear, pH dependent, and in accordance with Type II non‐Fickian transport. PGM degradation was characterized by an initial burst release of degradation products over 7 days, followed by a plateau in mass loss at approximately 75% over a period of several weeks. in vitro studies indicate that PGM degradation products, namely Cu2+, are cytotoxic and may interact with eluted DOX to impair its pharmacological activity. With additional compositional considerations, this approach may prove promising for DEB‐TACE applications.
doi_str_mv 10.1002/jbm.b.34594
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2365190435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419277573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3554-fa5d7b8fe2d9e6b8536c9a91835b7c17cbe4d7e183511d0f800f38f68842cd453</originalsourceid><addsrcrecordid>eNp90MtO3DAUBmCrApVLu-oeRWKDVM3ga5wsGSiXiqqbdtGVZTsnjEdOHOxEdFjxCDxjn6QJAyxYsPJFn38d_wh9IXhOMKbHK9PMzZxxUfIPaJcIQWe8LMjW616yHbSX0mrEORbsI9phdHxZ5nIX_TkLf0McjLOu_ffw6IOuoMq64NfdMqRuqXvIbrxOKWucjdMNREhZHWLWR90mHXuITvvMLqEJ0Jjg3b3uXWg_oe1a-wSfn9d99Pv826_Ty9n1z4ur05PrmWVC8FmtRSVNUQOtSshNIVhuS12SggkjLZHWAK8kTGdCKlwXGNesqPOi4NRWXLB9dLTJ7WK4HSD1qnHJgve6hTAkRVkuSIk5m-jhG7oKQ2zH6RTlpKRSCslG9XWjpv-mCLXqomt0XCuC1dS4GhtXRj01PuqD58zBNFC92peKR0A34M55WL-Xpb4vfiw2qf8BYNeORg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419277573</pqid></control><display><type>article</type><title>Doxorubicin‐loaded polyphosphate glass microspheres for transarterial chemoembolization</title><source>Wiley Online Library All Journals</source><creator>Nix, Hayden P. ; Momeni, Arash ; Chevrier, Daniel M. ; Whitman, Catherine A. ; Filiaggi, Mark J.</creator><creatorcontrib>Nix, Hayden P. ; Momeni, Arash ; Chevrier, Daniel M. ; Whitman, Catherine A. ; Filiaggi, Mark J.</creatorcontrib><description>The standard of care for intermediate stage hepatocellular carcinoma is transarterial chemoembolization (TACE). Drug‐eluting bead TACE (DEB‐TACE) has emerged as a leading form of TACE, as it uses highly calibrated microspheres to deliver consistent embolization and controlled drug release to the tumor microenvironment. We report here on doxorubicin (DOX)‐loaded polyphosphate glass microspheres (PGM) as a novel resorbable, radiopaque, preloaded DEB‐TACE platform. Coacervate composed of polyphosphate chains complexed with Ba2+, Ca2+, and Cu2+ can be loaded with DOX prior to PGM synthesis, with PGM production achieved using a water‐in‐oil emulsion technique at room temperature yielding highly spherical particles in clinically relevant size fractions. In vitro, DOX release was found to be linear, pH dependent, and in accordance with Type II non‐Fickian transport. PGM degradation was characterized by an initial burst release of degradation products over 7 days, followed by a plateau in mass loss at approximately 75% over a period of several weeks. in vitro studies indicate that PGM degradation products, namely Cu2+, are cytotoxic and may interact with eluted DOX to impair its pharmacological activity. With additional compositional considerations, this approach may prove promising for DEB‐TACE applications.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34594</identifier><identifier>PMID: 32100967</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Biomedical materials ; Calcium ; Calcium ions ; Chemoembolization ; chemotherapy ; Copper ; Cytotoxicity ; Degradation ; Degradation products ; Doxorubicin ; drug delivery ; Drug delivery systems ; Embolization ; Glass ; Hepatocellular carcinoma ; Materials research ; Materials science ; Microspheres ; polyphosphate ; Room temperature ; sustained release</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2020-08, Vol.108 (6), p.2621-2632</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3554-fa5d7b8fe2d9e6b8536c9a91835b7c17cbe4d7e183511d0f800f38f68842cd453</cites><orcidid>0000-0003-4374-1733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34594$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34594$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32100967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nix, Hayden P.</creatorcontrib><creatorcontrib>Momeni, Arash</creatorcontrib><creatorcontrib>Chevrier, Daniel M.</creatorcontrib><creatorcontrib>Whitman, Catherine A.</creatorcontrib><creatorcontrib>Filiaggi, Mark J.</creatorcontrib><title>Doxorubicin‐loaded polyphosphate glass microspheres for transarterial chemoembolization</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>The standard of care for intermediate stage hepatocellular carcinoma is transarterial chemoembolization (TACE). Drug‐eluting bead TACE (DEB‐TACE) has emerged as a leading form of TACE, as it uses highly calibrated microspheres to deliver consistent embolization and controlled drug release to the tumor microenvironment. We report here on doxorubicin (DOX)‐loaded polyphosphate glass microspheres (PGM) as a novel resorbable, radiopaque, preloaded DEB‐TACE platform. Coacervate composed of polyphosphate chains complexed with Ba2+, Ca2+, and Cu2+ can be loaded with DOX prior to PGM synthesis, with PGM production achieved using a water‐in‐oil emulsion technique at room temperature yielding highly spherical particles in clinically relevant size fractions. In vitro, DOX release was found to be linear, pH dependent, and in accordance with Type II non‐Fickian transport. PGM degradation was characterized by an initial burst release of degradation products over 7 days, followed by a plateau in mass loss at approximately 75% over a period of several weeks. in vitro studies indicate that PGM degradation products, namely Cu2+, are cytotoxic and may interact with eluted DOX to impair its pharmacological activity. With additional compositional considerations, this approach may prove promising for DEB‐TACE applications.</description><subject>Biomedical materials</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Chemoembolization</subject><subject>chemotherapy</subject><subject>Copper</subject><subject>Cytotoxicity</subject><subject>Degradation</subject><subject>Degradation products</subject><subject>Doxorubicin</subject><subject>drug delivery</subject><subject>Drug delivery systems</subject><subject>Embolization</subject><subject>Glass</subject><subject>Hepatocellular carcinoma</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Microspheres</subject><subject>polyphosphate</subject><subject>Room temperature</subject><subject>sustained release</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90MtO3DAUBmCrApVLu-oeRWKDVM3ga5wsGSiXiqqbdtGVZTsnjEdOHOxEdFjxCDxjn6QJAyxYsPJFn38d_wh9IXhOMKbHK9PMzZxxUfIPaJcIQWe8LMjW616yHbSX0mrEORbsI9phdHxZ5nIX_TkLf0McjLOu_ffw6IOuoMq64NfdMqRuqXvIbrxOKWucjdMNREhZHWLWR90mHXuITvvMLqEJ0Jjg3b3uXWg_oe1a-wSfn9d99Pv826_Ty9n1z4ur05PrmWVC8FmtRSVNUQOtSshNIVhuS12SggkjLZHWAK8kTGdCKlwXGNesqPOi4NRWXLB9dLTJ7WK4HSD1qnHJgve6hTAkRVkuSIk5m-jhG7oKQ2zH6RTlpKRSCslG9XWjpv-mCLXqomt0XCuC1dS4GhtXRj01PuqD58zBNFC92peKR0A34M55WL-Xpb4vfiw2qf8BYNeORg</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Nix, Hayden P.</creator><creator>Momeni, Arash</creator><creator>Chevrier, Daniel M.</creator><creator>Whitman, Catherine A.</creator><creator>Filiaggi, Mark J.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4374-1733</orcidid></search><sort><creationdate>202008</creationdate><title>Doxorubicin‐loaded polyphosphate glass microspheres for transarterial chemoembolization</title><author>Nix, Hayden P. ; Momeni, Arash ; Chevrier, Daniel M. ; Whitman, Catherine A. ; Filiaggi, Mark J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3554-fa5d7b8fe2d9e6b8536c9a91835b7c17cbe4d7e183511d0f800f38f68842cd453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical materials</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Chemoembolization</topic><topic>chemotherapy</topic><topic>Copper</topic><topic>Cytotoxicity</topic><topic>Degradation</topic><topic>Degradation products</topic><topic>Doxorubicin</topic><topic>drug delivery</topic><topic>Drug delivery systems</topic><topic>Embolization</topic><topic>Glass</topic><topic>Hepatocellular carcinoma</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Microspheres</topic><topic>polyphosphate</topic><topic>Room temperature</topic><topic>sustained release</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nix, Hayden P.</creatorcontrib><creatorcontrib>Momeni, Arash</creatorcontrib><creatorcontrib>Chevrier, Daniel M.</creatorcontrib><creatorcontrib>Whitman, Catherine A.</creatorcontrib><creatorcontrib>Filiaggi, Mark J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nix, Hayden P.</au><au>Momeni, Arash</au><au>Chevrier, Daniel M.</au><au>Whitman, Catherine A.</au><au>Filiaggi, Mark J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doxorubicin‐loaded polyphosphate glass microspheres for transarterial chemoembolization</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2020-08</date><risdate>2020</risdate><volume>108</volume><issue>6</issue><spage>2621</spage><epage>2632</epage><pages>2621-2632</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>The standard of care for intermediate stage hepatocellular carcinoma is transarterial chemoembolization (TACE). Drug‐eluting bead TACE (DEB‐TACE) has emerged as a leading form of TACE, as it uses highly calibrated microspheres to deliver consistent embolization and controlled drug release to the tumor microenvironment. We report here on doxorubicin (DOX)‐loaded polyphosphate glass microspheres (PGM) as a novel resorbable, radiopaque, preloaded DEB‐TACE platform. Coacervate composed of polyphosphate chains complexed with Ba2+, Ca2+, and Cu2+ can be loaded with DOX prior to PGM synthesis, with PGM production achieved using a water‐in‐oil emulsion technique at room temperature yielding highly spherical particles in clinically relevant size fractions. In vitro, DOX release was found to be linear, pH dependent, and in accordance with Type II non‐Fickian transport. PGM degradation was characterized by an initial burst release of degradation products over 7 days, followed by a plateau in mass loss at approximately 75% over a period of several weeks. in vitro studies indicate that PGM degradation products, namely Cu2+, are cytotoxic and may interact with eluted DOX to impair its pharmacological activity. With additional compositional considerations, this approach may prove promising for DEB‐TACE applications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32100967</pmid><doi>10.1002/jbm.b.34594</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4374-1733</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2020-08, Vol.108 (6), p.2621-2632
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_2365190435
source Wiley Online Library All Journals
subjects Biomedical materials
Calcium
Calcium ions
Chemoembolization
chemotherapy
Copper
Cytotoxicity
Degradation
Degradation products
Doxorubicin
drug delivery
Drug delivery systems
Embolization
Glass
Hepatocellular carcinoma
Materials research
Materials science
Microspheres
polyphosphate
Room temperature
sustained release
title Doxorubicin‐loaded polyphosphate glass microspheres for transarterial chemoembolization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doxorubicin%E2%80%90loaded%20polyphosphate%20glass%20microspheres%20for%20transarterial%20chemoembolization&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Nix,%20Hayden%20P.&rft.date=2020-08&rft.volume=108&rft.issue=6&rft.spage=2621&rft.epage=2632&rft.pages=2621-2632&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34594&rft_dat=%3Cproquest_cross%3E2419277573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419277573&rft_id=info:pmid/32100967&rfr_iscdi=true