Learning Deep Gradient Descent Optimization for Image Deconvolution
As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2020-12, Vol.31 (12), p.5468-5482 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5482 |
---|---|
container_issue | 12 |
container_start_page | 5468 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 31 |
creator | Gong, Dong Zhang, Zhen Shi, Qinfeng van den Hengel, Anton Shen, Chunhua Zhang, Yanning |
description | As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications. |
doi_str_mv | 10.1109/TNNLS.2020.2968289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2364045082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9000801</ieee_id><sourcerecordid>2467298308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-52e6e25fc89bfc510ece81161e417de48103e8906058717ce9404e5637602d6d3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoTub-gIIUvPGmMx9tmlzK1Dko24UTvAtdejoy-mXSCvrrTd3chbk5Sc7zHg4PQlcETwnB8n69XKavU4opnlLJBRXyBF1QwmlImRCnx3vyPkIT53bYH45jHslzNGIUJyLm_ALNUshsbept8AjQBnOb5Qbqzr-cHuqq7UxlvrPONHVQNDZYVNkWfFs39WdT9sP_JTorstLB5FDH6O35aT17CdPVfDF7SEPNZNyFMQUONC60kJtCxwSDBkEIJxCRJIdIEMxAyGFLkZBEg4xwBDFnCcc05zkbo7v93NY2Hz24TlXGb1mWWQ1N7xRl3CdiLKhHb_-hu6a3td9O0YgnVAqGhafontK2cc5CoVprqsx-KYLVYFn9WlaDZXWw7EM3h9H9poL8GPlz6oHrPWAA4NiW3r_AhP0AlxV-hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467298308</pqid></control><display><type>article</type><title>Learning Deep Gradient Descent Optimization for Image Deconvolution</title><source>IEEE Electronic Library (IEL)</source><creator>Gong, Dong ; Zhang, Zhen ; Shi, Qinfeng ; van den Hengel, Anton ; Shen, Chunhua ; Zhang, Yanning</creator><creatorcontrib>Gong, Dong ; Zhang, Zhen ; Shi, Qinfeng ; van den Hengel, Anton ; Shen, Chunhua ; Zhang, Yanning</creatorcontrib><description>As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2020.2968289</identifier><identifier>PMID: 32078566</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Benchmarks ; Blurring ; Deconvolution ; Deep gradient descent ; image deblurring ; image deconvolution ; Image restoration ; Inverse problems ; Kernel ; Learning ; learning to optimize ; Machine learning ; Neural networks ; Noise level ; Noise levels ; Optimization ; Regularization ; Static models</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-12, Vol.31 (12), p.5468-5482</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-52e6e25fc89bfc510ece81161e417de48103e8906058717ce9404e5637602d6d3</citedby><cites>FETCH-LOGICAL-c395t-52e6e25fc89bfc510ece81161e417de48103e8906058717ce9404e5637602d6d3</cites><orcidid>0000-0002-2668-9630 ; 0000-0002-2977-8057 ; 0000-0002-8648-8718 ; 0000-0003-3027-8364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9000801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9000801$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32078566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Dong</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Shi, Qinfeng</creatorcontrib><creatorcontrib>van den Hengel, Anton</creatorcontrib><creatorcontrib>Shen, Chunhua</creatorcontrib><creatorcontrib>Zhang, Yanning</creatorcontrib><title>Learning Deep Gradient Descent Optimization for Image Deconvolution</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.</description><subject>Artificial neural networks</subject><subject>Benchmarks</subject><subject>Blurring</subject><subject>Deconvolution</subject><subject>Deep gradient descent</subject><subject>image deblurring</subject><subject>image deconvolution</subject><subject>Image restoration</subject><subject>Inverse problems</subject><subject>Kernel</subject><subject>Learning</subject><subject>learning to optimize</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise level</subject><subject>Noise levels</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Static models</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhoMoTub-gIIUvPGmMx9tmlzK1Dko24UTvAtdejoy-mXSCvrrTd3chbk5Sc7zHg4PQlcETwnB8n69XKavU4opnlLJBRXyBF1QwmlImRCnx3vyPkIT53bYH45jHslzNGIUJyLm_ALNUshsbept8AjQBnOb5Qbqzr-cHuqq7UxlvrPONHVQNDZYVNkWfFs39WdT9sP_JTorstLB5FDH6O35aT17CdPVfDF7SEPNZNyFMQUONC60kJtCxwSDBkEIJxCRJIdIEMxAyGFLkZBEg4xwBDFnCcc05zkbo7v93NY2Hz24TlXGb1mWWQ1N7xRl3CdiLKhHb_-hu6a3td9O0YgnVAqGhafontK2cc5CoVprqsx-KYLVYFn9WlaDZXWw7EM3h9H9poL8GPlz6oHrPWAA4NiW3r_AhP0AlxV-hw</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Gong, Dong</creator><creator>Zhang, Zhen</creator><creator>Shi, Qinfeng</creator><creator>van den Hengel, Anton</creator><creator>Shen, Chunhua</creator><creator>Zhang, Yanning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2668-9630</orcidid><orcidid>https://orcid.org/0000-0002-2977-8057</orcidid><orcidid>https://orcid.org/0000-0002-8648-8718</orcidid><orcidid>https://orcid.org/0000-0003-3027-8364</orcidid></search><sort><creationdate>20201201</creationdate><title>Learning Deep Gradient Descent Optimization for Image Deconvolution</title><author>Gong, Dong ; Zhang, Zhen ; Shi, Qinfeng ; van den Hengel, Anton ; Shen, Chunhua ; Zhang, Yanning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-52e6e25fc89bfc510ece81161e417de48103e8906058717ce9404e5637602d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Benchmarks</topic><topic>Blurring</topic><topic>Deconvolution</topic><topic>Deep gradient descent</topic><topic>image deblurring</topic><topic>image deconvolution</topic><topic>Image restoration</topic><topic>Inverse problems</topic><topic>Kernel</topic><topic>Learning</topic><topic>learning to optimize</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise level</topic><topic>Noise levels</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Static models</topic><toplevel>online_resources</toplevel><creatorcontrib>Gong, Dong</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Shi, Qinfeng</creatorcontrib><creatorcontrib>van den Hengel, Anton</creatorcontrib><creatorcontrib>Shen, Chunhua</creatorcontrib><creatorcontrib>Zhang, Yanning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gong, Dong</au><au>Zhang, Zhen</au><au>Shi, Qinfeng</au><au>van den Hengel, Anton</au><au>Shen, Chunhua</au><au>Zhang, Yanning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Deep Gradient Descent Optimization for Image Deconvolution</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>31</volume><issue>12</issue><spage>5468</spage><epage>5482</epage><pages>5468-5482</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32078566</pmid><doi>10.1109/TNNLS.2020.2968289</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2668-9630</orcidid><orcidid>https://orcid.org/0000-0002-2977-8057</orcidid><orcidid>https://orcid.org/0000-0002-8648-8718</orcidid><orcidid>https://orcid.org/0000-0003-3027-8364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2020-12, Vol.31 (12), p.5468-5482 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2364045082 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Benchmarks Blurring Deconvolution Deep gradient descent image deblurring image deconvolution Image restoration Inverse problems Kernel Learning learning to optimize Machine learning Neural networks Noise level Noise levels Optimization Regularization Static models |
title | Learning Deep Gradient Descent Optimization for Image Deconvolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T03%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Deep%20Gradient%20Descent%20Optimization%20for%20Image%20Deconvolution&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Gong,%20Dong&rft.date=2020-12-01&rft.volume=31&rft.issue=12&rft.spage=5468&rft.epage=5482&rft.pages=5468-5482&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2020.2968289&rft_dat=%3Cproquest_RIE%3E2467298308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467298308&rft_id=info:pmid/32078566&rft_ieee_id=9000801&rfr_iscdi=true |