Learning Deep Gradient Descent Optimization for Image Deconvolution

As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2020-12, Vol.31 (12), p.5468-5482
Hauptverfasser: Gong, Dong, Zhang, Zhen, Shi, Qinfeng, van den Hengel, Anton, Shen, Chunhua, Zhang, Yanning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5482
container_issue 12
container_start_page 5468
container_title IEEE transaction on neural networks and learning systems
container_volume 31
creator Gong, Dong
Zhang, Zhen
Shi, Qinfeng
van den Hengel, Anton
Shen, Chunhua
Zhang, Yanning
description As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.
doi_str_mv 10.1109/TNNLS.2020.2968289
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2364045082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9000801</ieee_id><sourcerecordid>2467298308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-52e6e25fc89bfc510ece81161e417de48103e8906058717ce9404e5637602d6d3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoTub-gIIUvPGmMx9tmlzK1Dko24UTvAtdejoy-mXSCvrrTd3chbk5Sc7zHg4PQlcETwnB8n69XKavU4opnlLJBRXyBF1QwmlImRCnx3vyPkIT53bYH45jHslzNGIUJyLm_ALNUshsbept8AjQBnOb5Qbqzr-cHuqq7UxlvrPONHVQNDZYVNkWfFs39WdT9sP_JTorstLB5FDH6O35aT17CdPVfDF7SEPNZNyFMQUONC60kJtCxwSDBkEIJxCRJIdIEMxAyGFLkZBEg4xwBDFnCcc05zkbo7v93NY2Hz24TlXGb1mWWQ1N7xRl3CdiLKhHb_-hu6a3td9O0YgnVAqGhafontK2cc5CoVprqsx-KYLVYFn9WlaDZXWw7EM3h9H9poL8GPlz6oHrPWAA4NiW3r_AhP0AlxV-hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467298308</pqid></control><display><type>article</type><title>Learning Deep Gradient Descent Optimization for Image Deconvolution</title><source>IEEE Electronic Library (IEL)</source><creator>Gong, Dong ; Zhang, Zhen ; Shi, Qinfeng ; van den Hengel, Anton ; Shen, Chunhua ; Zhang, Yanning</creator><creatorcontrib>Gong, Dong ; Zhang, Zhen ; Shi, Qinfeng ; van den Hengel, Anton ; Shen, Chunhua ; Zhang, Yanning</creatorcontrib><description>As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2020.2968289</identifier><identifier>PMID: 32078566</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Benchmarks ; Blurring ; Deconvolution ; Deep gradient descent ; image deblurring ; image deconvolution ; Image restoration ; Inverse problems ; Kernel ; Learning ; learning to optimize ; Machine learning ; Neural networks ; Noise level ; Noise levels ; Optimization ; Regularization ; Static models</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-12, Vol.31 (12), p.5468-5482</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-52e6e25fc89bfc510ece81161e417de48103e8906058717ce9404e5637602d6d3</citedby><cites>FETCH-LOGICAL-c395t-52e6e25fc89bfc510ece81161e417de48103e8906058717ce9404e5637602d6d3</cites><orcidid>0000-0002-2668-9630 ; 0000-0002-2977-8057 ; 0000-0002-8648-8718 ; 0000-0003-3027-8364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9000801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9000801$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32078566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Dong</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Shi, Qinfeng</creatorcontrib><creatorcontrib>van den Hengel, Anton</creatorcontrib><creatorcontrib>Shen, Chunhua</creatorcontrib><creatorcontrib>Zhang, Yanning</creatorcontrib><title>Learning Deep Gradient Descent Optimization for Image Deconvolution</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.</description><subject>Artificial neural networks</subject><subject>Benchmarks</subject><subject>Blurring</subject><subject>Deconvolution</subject><subject>Deep gradient descent</subject><subject>image deblurring</subject><subject>image deconvolution</subject><subject>Image restoration</subject><subject>Inverse problems</subject><subject>Kernel</subject><subject>Learning</subject><subject>learning to optimize</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise level</subject><subject>Noise levels</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Static models</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhoMoTub-gIIUvPGmMx9tmlzK1Dko24UTvAtdejoy-mXSCvrrTd3chbk5Sc7zHg4PQlcETwnB8n69XKavU4opnlLJBRXyBF1QwmlImRCnx3vyPkIT53bYH45jHslzNGIUJyLm_ALNUshsbept8AjQBnOb5Qbqzr-cHuqq7UxlvrPONHVQNDZYVNkWfFs39WdT9sP_JTorstLB5FDH6O35aT17CdPVfDF7SEPNZNyFMQUONC60kJtCxwSDBkEIJxCRJIdIEMxAyGFLkZBEg4xwBDFnCcc05zkbo7v93NY2Hz24TlXGb1mWWQ1N7xRl3CdiLKhHb_-hu6a3td9O0YgnVAqGhafontK2cc5CoVprqsx-KYLVYFn9WlaDZXWw7EM3h9H9poL8GPlz6oHrPWAA4NiW3r_AhP0AlxV-hw</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Gong, Dong</creator><creator>Zhang, Zhen</creator><creator>Shi, Qinfeng</creator><creator>van den Hengel, Anton</creator><creator>Shen, Chunhua</creator><creator>Zhang, Yanning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2668-9630</orcidid><orcidid>https://orcid.org/0000-0002-2977-8057</orcidid><orcidid>https://orcid.org/0000-0002-8648-8718</orcidid><orcidid>https://orcid.org/0000-0003-3027-8364</orcidid></search><sort><creationdate>20201201</creationdate><title>Learning Deep Gradient Descent Optimization for Image Deconvolution</title><author>Gong, Dong ; Zhang, Zhen ; Shi, Qinfeng ; van den Hengel, Anton ; Shen, Chunhua ; Zhang, Yanning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-52e6e25fc89bfc510ece81161e417de48103e8906058717ce9404e5637602d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Benchmarks</topic><topic>Blurring</topic><topic>Deconvolution</topic><topic>Deep gradient descent</topic><topic>image deblurring</topic><topic>image deconvolution</topic><topic>Image restoration</topic><topic>Inverse problems</topic><topic>Kernel</topic><topic>Learning</topic><topic>learning to optimize</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise level</topic><topic>Noise levels</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Static models</topic><toplevel>online_resources</toplevel><creatorcontrib>Gong, Dong</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Shi, Qinfeng</creatorcontrib><creatorcontrib>van den Hengel, Anton</creatorcontrib><creatorcontrib>Shen, Chunhua</creatorcontrib><creatorcontrib>Zhang, Yanning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gong, Dong</au><au>Zhang, Zhen</au><au>Shi, Qinfeng</au><au>van den Hengel, Anton</au><au>Shen, Chunhua</au><au>Zhang, Yanning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Deep Gradient Descent Optimization for Image Deconvolution</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>31</volume><issue>12</issue><spage>5468</spage><epage>5482</epage><pages>5468-5482</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32078566</pmid><doi>10.1109/TNNLS.2020.2968289</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2668-9630</orcidid><orcidid>https://orcid.org/0000-0002-2977-8057</orcidid><orcidid>https://orcid.org/0000-0002-8648-8718</orcidid><orcidid>https://orcid.org/0000-0003-3027-8364</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2020-12, Vol.31 (12), p.5468-5482
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2364045082
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Benchmarks
Blurring
Deconvolution
Deep gradient descent
image deblurring
image deconvolution
Image restoration
Inverse problems
Kernel
Learning
learning to optimize
Machine learning
Neural networks
Noise level
Noise levels
Optimization
Regularization
Static models
title Learning Deep Gradient Descent Optimization for Image Deconvolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T03%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Deep%20Gradient%20Descent%20Optimization%20for%20Image%20Deconvolution&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Gong,%20Dong&rft.date=2020-12-01&rft.volume=31&rft.issue=12&rft.spage=5468&rft.epage=5482&rft.pages=5468-5482&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2020.2968289&rft_dat=%3Cproquest_RIE%3E2467298308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467298308&rft_id=info:pmid/32078566&rft_ieee_id=9000801&rfr_iscdi=true