Optimising Boolean Synthetic Regulatory Networks to Control Cell States

Controlling the dynamics of gene regulatory networks is a challenging problem. In recent years, a number of control methods have been proposed, but most of these approaches do not address the problem of how they could be implemented in practice. In this paper, we consider the idea of using a synthet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2021-11, Vol.18 (6), p.2649-2658
Hauptverfasser: Taou, Nadia, Lones, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2658
container_issue 6
container_start_page 2649
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 18
creator Taou, Nadia
Lones, Michael
description Controlling the dynamics of gene regulatory networks is a challenging problem. In recent years, a number of control methods have been proposed, but most of these approaches do not address the problem of how they could be implemented in practice. In this paper, we consider the idea of using a synthetic regulatory network as a closed-loop controller that can control and respond to the dynamics of a cell's native regulatory network in situ . We explore this idea using a computational model in which both native and synthetic regulatory networks are represented by Boolean networks. We then use an evolutionary algorithm to optimise both the structure and parameters of the synthetic Boolean network. To test this approach, we look at whether controllers can be optimised to target specific steady states in five different Boolean regulatory circuit models. Our results show that in most cases the controllers are able to drive the dynamics of the target system to a specified steady state, often using few interventions, and further experiments using random Boolean networks show that the approach scales well to larger controlled networks.
doi_str_mv 10.1109/TCBB.2020.2973636
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2362120323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8998965</ieee_id><sourcerecordid>2607893394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-8f916817f4bcb2c5ba3a0154b4d850e72e4453e980854998c6587feaa6af400f3</originalsourceid><addsrcrecordid>eNpdkEtLAzEQx4Mo1tcHEEEWvHjZmvcmR7v4AlHwcQ7Z7Wzdut3UJIv025vS6sHTDMxvhv_8EDoleEwI1ldv5WQyppjiMdUFk0zuoAMiRJFrLfnuuuciF1qyEToMYY4x5RrzfTRiFBdKCHGA7p6XsV20oe1n2cS5Dmyfva76-AGxrbMXmA2djc6vsieI385_hiy6rHR99K7LSui67DXaCOEY7TW2C3CyrUfo_fbmrbzPH5_vHsrrx7xmmsZcNZpIRYqGV3VFa1FZZnGKWfGpEhgKCpwLBlphJbjWqpZCFQ1YK23DMW7YEbrc3F169zVAiCaFr1MO24MbgqFMUkIxoyyhF__QuRt8n9IZKtP_mjHNE0U2VO1dCB4as_TtwvqVIdisLZu1ZbO2bLaW08759vJQLWD6t_GrNQFnG6AFgL-xSg9pKdgPUpd_Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607893394</pqid></control><display><type>article</type><title>Optimising Boolean Synthetic Regulatory Networks to Control Cell States</title><source>IEEE Electronic Library (IEL)</source><creator>Taou, Nadia ; Lones, Michael</creator><creatorcontrib>Taou, Nadia ; Lones, Michael</creatorcontrib><description>Controlling the dynamics of gene regulatory networks is a challenging problem. In recent years, a number of control methods have been proposed, but most of these approaches do not address the problem of how they could be implemented in practice. In this paper, we consider the idea of using a synthetic regulatory network as a closed-loop controller that can control and respond to the dynamics of a cell's native regulatory network in situ . We explore this idea using a computational model in which both native and synthetic regulatory networks are represented by Boolean networks. We then use an evolutionary algorithm to optimise both the structure and parameters of the synthetic Boolean network. To test this approach, we look at whether controllers can be optimised to target specific steady states in five different Boolean regulatory circuit models. Our results show that in most cases the controllers are able to drive the dynamics of the target system to a specified steady state, often using few interventions, and further experiments using random Boolean networks show that the approach scales well to larger controlled networks.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2020.2973636</identifier><identifier>PMID: 32078555</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Arabidopsis - genetics ; Biological system modeling ; Boolean ; Boolean algebra ; Boolean functions ; Boolean networks ; Cell Cycle - genetics ; Circuits ; closed-loop control ; Computational modeling ; Computer applications ; Control methods ; Controllers ; Evolutionary algorithms ; Evolutionary computation ; Gene regulatory networks ; Gene Regulatory Networks - genetics ; Integrated circuit modeling ; Mathematical model ; Models, Biological ; Networks ; Optimization ; Schizosaccharomyces - genetics ; Steady state ; Synthetic biology ; Synthetic Biology - methods</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2021-11, Vol.18 (6), p.2649-2658</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-8f916817f4bcb2c5ba3a0154b4d850e72e4453e980854998c6587feaa6af400f3</citedby><cites>FETCH-LOGICAL-c392t-8f916817f4bcb2c5ba3a0154b4d850e72e4453e980854998c6587feaa6af400f3</cites><orcidid>0000-0002-2745-9896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8998965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8998965$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32078555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taou, Nadia</creatorcontrib><creatorcontrib>Lones, Michael</creatorcontrib><title>Optimising Boolean Synthetic Regulatory Networks to Control Cell States</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Controlling the dynamics of gene regulatory networks is a challenging problem. In recent years, a number of control methods have been proposed, but most of these approaches do not address the problem of how they could be implemented in practice. In this paper, we consider the idea of using a synthetic regulatory network as a closed-loop controller that can control and respond to the dynamics of a cell's native regulatory network in situ . We explore this idea using a computational model in which both native and synthetic regulatory networks are represented by Boolean networks. We then use an evolutionary algorithm to optimise both the structure and parameters of the synthetic Boolean network. To test this approach, we look at whether controllers can be optimised to target specific steady states in five different Boolean regulatory circuit models. Our results show that in most cases the controllers are able to drive the dynamics of the target system to a specified steady state, often using few interventions, and further experiments using random Boolean networks show that the approach scales well to larger controlled networks.</description><subject>Algorithms</subject><subject>Arabidopsis - genetics</subject><subject>Biological system modeling</subject><subject>Boolean</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Boolean networks</subject><subject>Cell Cycle - genetics</subject><subject>Circuits</subject><subject>closed-loop control</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Control methods</subject><subject>Controllers</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Gene regulatory networks</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>Models, Biological</subject><subject>Networks</subject><subject>Optimization</subject><subject>Schizosaccharomyces - genetics</subject><subject>Steady state</subject><subject>Synthetic biology</subject><subject>Synthetic Biology - methods</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtLAzEQx4Mo1tcHEEEWvHjZmvcmR7v4AlHwcQ7Z7Wzdut3UJIv025vS6sHTDMxvhv_8EDoleEwI1ldv5WQyppjiMdUFk0zuoAMiRJFrLfnuuuciF1qyEToMYY4x5RrzfTRiFBdKCHGA7p6XsV20oe1n2cS5Dmyfva76-AGxrbMXmA2djc6vsieI385_hiy6rHR99K7LSui67DXaCOEY7TW2C3CyrUfo_fbmrbzPH5_vHsrrx7xmmsZcNZpIRYqGV3VFa1FZZnGKWfGpEhgKCpwLBlphJbjWqpZCFQ1YK23DMW7YEbrc3F169zVAiCaFr1MO24MbgqFMUkIxoyyhF__QuRt8n9IZKtP_mjHNE0U2VO1dCB4as_TtwvqVIdisLZu1ZbO2bLaW08759vJQLWD6t_GrNQFnG6AFgL-xSg9pKdgPUpd_Vg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Taou, Nadia</creator><creator>Lones, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2745-9896</orcidid></search><sort><creationdate>20211101</creationdate><title>Optimising Boolean Synthetic Regulatory Networks to Control Cell States</title><author>Taou, Nadia ; Lones, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-8f916817f4bcb2c5ba3a0154b4d850e72e4453e980854998c6587feaa6af400f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arabidopsis - genetics</topic><topic>Biological system modeling</topic><topic>Boolean</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Boolean networks</topic><topic>Cell Cycle - genetics</topic><topic>Circuits</topic><topic>closed-loop control</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Control methods</topic><topic>Controllers</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Gene regulatory networks</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>Models, Biological</topic><topic>Networks</topic><topic>Optimization</topic><topic>Schizosaccharomyces - genetics</topic><topic>Steady state</topic><topic>Synthetic biology</topic><topic>Synthetic Biology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taou, Nadia</creatorcontrib><creatorcontrib>Lones, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taou, Nadia</au><au>Lones, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimising Boolean Synthetic Regulatory Networks to Control Cell States</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><spage>2649</spage><epage>2658</epage><pages>2649-2658</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Controlling the dynamics of gene regulatory networks is a challenging problem. In recent years, a number of control methods have been proposed, but most of these approaches do not address the problem of how they could be implemented in practice. In this paper, we consider the idea of using a synthetic regulatory network as a closed-loop controller that can control and respond to the dynamics of a cell's native regulatory network in situ . We explore this idea using a computational model in which both native and synthetic regulatory networks are represented by Boolean networks. We then use an evolutionary algorithm to optimise both the structure and parameters of the synthetic Boolean network. To test this approach, we look at whether controllers can be optimised to target specific steady states in five different Boolean regulatory circuit models. Our results show that in most cases the controllers are able to drive the dynamics of the target system to a specified steady state, often using few interventions, and further experiments using random Boolean networks show that the approach scales well to larger controlled networks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32078555</pmid><doi>10.1109/TCBB.2020.2973636</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2745-9896</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2021-11, Vol.18 (6), p.2649-2658
issn 1545-5963
1557-9964
language eng
recordid cdi_proquest_miscellaneous_2362120323
source IEEE Electronic Library (IEL)
subjects Algorithms
Arabidopsis - genetics
Biological system modeling
Boolean
Boolean algebra
Boolean functions
Boolean networks
Cell Cycle - genetics
Circuits
closed-loop control
Computational modeling
Computer applications
Control methods
Controllers
Evolutionary algorithms
Evolutionary computation
Gene regulatory networks
Gene Regulatory Networks - genetics
Integrated circuit modeling
Mathematical model
Models, Biological
Networks
Optimization
Schizosaccharomyces - genetics
Steady state
Synthetic biology
Synthetic Biology - methods
title Optimising Boolean Synthetic Regulatory Networks to Control Cell States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimising%20Boolean%20Synthetic%20Regulatory%20Networks%20to%20Control%20Cell%20States&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Taou,%20Nadia&rft.date=2021-11-01&rft.volume=18&rft.issue=6&rft.spage=2649&rft.epage=2658&rft.pages=2649-2658&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2020.2973636&rft_dat=%3Cproquest_RIE%3E2607893394%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607893394&rft_id=info:pmid/32078555&rft_ieee_id=8998965&rfr_iscdi=true