Optimising Boolean Synthetic Regulatory Networks to Control Cell States
Controlling the dynamics of gene regulatory networks is a challenging problem. In recent years, a number of control methods have been proposed, but most of these approaches do not address the problem of how they could be implemented in practice. In this paper, we consider the idea of using a synthet...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2021-11, Vol.18 (6), p.2649-2658 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2658 |
---|---|
container_issue | 6 |
container_start_page | 2649 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 18 |
creator | Taou, Nadia Lones, Michael |
description | Controlling the dynamics of gene regulatory networks is a challenging problem. In recent years, a number of control methods have been proposed, but most of these approaches do not address the problem of how they could be implemented in practice. In this paper, we consider the idea of using a synthetic regulatory network as a closed-loop controller that can control and respond to the dynamics of a cell's native regulatory network in situ . We explore this idea using a computational model in which both native and synthetic regulatory networks are represented by Boolean networks. We then use an evolutionary algorithm to optimise both the structure and parameters of the synthetic Boolean network. To test this approach, we look at whether controllers can be optimised to target specific steady states in five different Boolean regulatory circuit models. Our results show that in most cases the controllers are able to drive the dynamics of the target system to a specified steady state, often using few interventions, and further experiments using random Boolean networks show that the approach scales well to larger controlled networks. |
doi_str_mv | 10.1109/TCBB.2020.2973636 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2362120323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8998965</ieee_id><sourcerecordid>2607893394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-8f916817f4bcb2c5ba3a0154b4d850e72e4453e980854998c6587feaa6af400f3</originalsourceid><addsrcrecordid>eNpdkEtLAzEQx4Mo1tcHEEEWvHjZmvcmR7v4AlHwcQ7Z7Wzdut3UJIv025vS6sHTDMxvhv_8EDoleEwI1ldv5WQyppjiMdUFk0zuoAMiRJFrLfnuuuciF1qyEToMYY4x5RrzfTRiFBdKCHGA7p6XsV20oe1n2cS5Dmyfva76-AGxrbMXmA2djc6vsieI385_hiy6rHR99K7LSui67DXaCOEY7TW2C3CyrUfo_fbmrbzPH5_vHsrrx7xmmsZcNZpIRYqGV3VFa1FZZnGKWfGpEhgKCpwLBlphJbjWqpZCFQ1YK23DMW7YEbrc3F169zVAiCaFr1MO24MbgqFMUkIxoyyhF__QuRt8n9IZKtP_mjHNE0U2VO1dCB4as_TtwvqVIdisLZu1ZbO2bLaW08759vJQLWD6t_GrNQFnG6AFgL-xSg9pKdgPUpd_Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607893394</pqid></control><display><type>article</type><title>Optimising Boolean Synthetic Regulatory Networks to Control Cell States</title><source>IEEE Electronic Library (IEL)</source><creator>Taou, Nadia ; Lones, Michael</creator><creatorcontrib>Taou, Nadia ; Lones, Michael</creatorcontrib><description>Controlling the dynamics of gene regulatory networks is a challenging problem. In recent years, a number of control methods have been proposed, but most of these approaches do not address the problem of how they could be implemented in practice. In this paper, we consider the idea of using a synthetic regulatory network as a closed-loop controller that can control and respond to the dynamics of a cell's native regulatory network in situ . We explore this idea using a computational model in which both native and synthetic regulatory networks are represented by Boolean networks. We then use an evolutionary algorithm to optimise both the structure and parameters of the synthetic Boolean network. To test this approach, we look at whether controllers can be optimised to target specific steady states in five different Boolean regulatory circuit models. Our results show that in most cases the controllers are able to drive the dynamics of the target system to a specified steady state, often using few interventions, and further experiments using random Boolean networks show that the approach scales well to larger controlled networks.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2020.2973636</identifier><identifier>PMID: 32078555</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Arabidopsis - genetics ; Biological system modeling ; Boolean ; Boolean algebra ; Boolean functions ; Boolean networks ; Cell Cycle - genetics ; Circuits ; closed-loop control ; Computational modeling ; Computer applications ; Control methods ; Controllers ; Evolutionary algorithms ; Evolutionary computation ; Gene regulatory networks ; Gene Regulatory Networks - genetics ; Integrated circuit modeling ; Mathematical model ; Models, Biological ; Networks ; Optimization ; Schizosaccharomyces - genetics ; Steady state ; Synthetic biology ; Synthetic Biology - methods</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2021-11, Vol.18 (6), p.2649-2658</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-8f916817f4bcb2c5ba3a0154b4d850e72e4453e980854998c6587feaa6af400f3</citedby><cites>FETCH-LOGICAL-c392t-8f916817f4bcb2c5ba3a0154b4d850e72e4453e980854998c6587feaa6af400f3</cites><orcidid>0000-0002-2745-9896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8998965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8998965$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32078555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taou, Nadia</creatorcontrib><creatorcontrib>Lones, Michael</creatorcontrib><title>Optimising Boolean Synthetic Regulatory Networks to Control Cell States</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Controlling the dynamics of gene regulatory networks is a challenging problem. In recent years, a number of control methods have been proposed, but most of these approaches do not address the problem of how they could be implemented in practice. In this paper, we consider the idea of using a synthetic regulatory network as a closed-loop controller that can control and respond to the dynamics of a cell's native regulatory network in situ . We explore this idea using a computational model in which both native and synthetic regulatory networks are represented by Boolean networks. We then use an evolutionary algorithm to optimise both the structure and parameters of the synthetic Boolean network. To test this approach, we look at whether controllers can be optimised to target specific steady states in five different Boolean regulatory circuit models. Our results show that in most cases the controllers are able to drive the dynamics of the target system to a specified steady state, often using few interventions, and further experiments using random Boolean networks show that the approach scales well to larger controlled networks.</description><subject>Algorithms</subject><subject>Arabidopsis - genetics</subject><subject>Biological system modeling</subject><subject>Boolean</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Boolean networks</subject><subject>Cell Cycle - genetics</subject><subject>Circuits</subject><subject>closed-loop control</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Control methods</subject><subject>Controllers</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Gene regulatory networks</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>Models, Biological</subject><subject>Networks</subject><subject>Optimization</subject><subject>Schizosaccharomyces - genetics</subject><subject>Steady state</subject><subject>Synthetic biology</subject><subject>Synthetic Biology - methods</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtLAzEQx4Mo1tcHEEEWvHjZmvcmR7v4AlHwcQ7Z7Wzdut3UJIv025vS6sHTDMxvhv_8EDoleEwI1ldv5WQyppjiMdUFk0zuoAMiRJFrLfnuuuciF1qyEToMYY4x5RrzfTRiFBdKCHGA7p6XsV20oe1n2cS5Dmyfva76-AGxrbMXmA2djc6vsieI385_hiy6rHR99K7LSui67DXaCOEY7TW2C3CyrUfo_fbmrbzPH5_vHsrrx7xmmsZcNZpIRYqGV3VFa1FZZnGKWfGpEhgKCpwLBlphJbjWqpZCFQ1YK23DMW7YEbrc3F169zVAiCaFr1MO24MbgqFMUkIxoyyhF__QuRt8n9IZKtP_mjHNE0U2VO1dCB4as_TtwvqVIdisLZu1ZbO2bLaW08759vJQLWD6t_GrNQFnG6AFgL-xSg9pKdgPUpd_Vg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Taou, Nadia</creator><creator>Lones, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2745-9896</orcidid></search><sort><creationdate>20211101</creationdate><title>Optimising Boolean Synthetic Regulatory Networks to Control Cell States</title><author>Taou, Nadia ; Lones, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-8f916817f4bcb2c5ba3a0154b4d850e72e4453e980854998c6587feaa6af400f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arabidopsis - genetics</topic><topic>Biological system modeling</topic><topic>Boolean</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Boolean networks</topic><topic>Cell Cycle - genetics</topic><topic>Circuits</topic><topic>closed-loop control</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Control methods</topic><topic>Controllers</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Gene regulatory networks</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>Models, Biological</topic><topic>Networks</topic><topic>Optimization</topic><topic>Schizosaccharomyces - genetics</topic><topic>Steady state</topic><topic>Synthetic biology</topic><topic>Synthetic Biology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taou, Nadia</creatorcontrib><creatorcontrib>Lones, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taou, Nadia</au><au>Lones, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimising Boolean Synthetic Regulatory Networks to Control Cell States</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><spage>2649</spage><epage>2658</epage><pages>2649-2658</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Controlling the dynamics of gene regulatory networks is a challenging problem. In recent years, a number of control methods have been proposed, but most of these approaches do not address the problem of how they could be implemented in practice. In this paper, we consider the idea of using a synthetic regulatory network as a closed-loop controller that can control and respond to the dynamics of a cell's native regulatory network in situ . We explore this idea using a computational model in which both native and synthetic regulatory networks are represented by Boolean networks. We then use an evolutionary algorithm to optimise both the structure and parameters of the synthetic Boolean network. To test this approach, we look at whether controllers can be optimised to target specific steady states in five different Boolean regulatory circuit models. Our results show that in most cases the controllers are able to drive the dynamics of the target system to a specified steady state, often using few interventions, and further experiments using random Boolean networks show that the approach scales well to larger controlled networks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32078555</pmid><doi>10.1109/TCBB.2020.2973636</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2745-9896</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2021-11, Vol.18 (6), p.2649-2658 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_proquest_miscellaneous_2362120323 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Arabidopsis - genetics Biological system modeling Boolean Boolean algebra Boolean functions Boolean networks Cell Cycle - genetics Circuits closed-loop control Computational modeling Computer applications Control methods Controllers Evolutionary algorithms Evolutionary computation Gene regulatory networks Gene Regulatory Networks - genetics Integrated circuit modeling Mathematical model Models, Biological Networks Optimization Schizosaccharomyces - genetics Steady state Synthetic biology Synthetic Biology - methods |
title | Optimising Boolean Synthetic Regulatory Networks to Control Cell States |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimising%20Boolean%20Synthetic%20Regulatory%20Networks%20to%20Control%20Cell%20States&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Taou,%20Nadia&rft.date=2021-11-01&rft.volume=18&rft.issue=6&rft.spage=2649&rft.epage=2658&rft.pages=2649-2658&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2020.2973636&rft_dat=%3Cproquest_RIE%3E2607893394%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607893394&rft_id=info:pmid/32078555&rft_ieee_id=8998965&rfr_iscdi=true |