CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank
Adenine base editing (ABE) enables enzymatic conversion from A-T into G-C base pairs. ABE holds promise for clinical application, as it does not depend on the introduction of double-strand breaks, contrary to conventional CRISPR/Cas9-mediated genome engineering. Here, we describe a cystic fibrosis (...
Gespeichert in:
Veröffentlicht in: | Cell stem cell 2020-04, Vol.26 (4), p.503-510.e7 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 510.e7 |
---|---|
container_issue | 4 |
container_start_page | 503 |
container_title | Cell stem cell |
container_volume | 26 |
creator | Geurts, Maarten H. de Poel, Eyleen Amatngalim, Gimano D. Oka, Rurika Meijers, Fleur M. Kruisselbrink, Evelien van Mourik, Peter Berkers, Gitte de Winter-de Groot, Karin M. Michel, Sabine Muilwijk, Danya Aalbers, Bente L. Mullenders, Jasper Boj, Sylvia F. Suen, Sylvia W.F. Brunsveld, Jesse E. Janssens, Hettie M. Mall, Marcus A. Graeber, Simon Y. van Boxtel, Ruben van der Ent, Cornelis K. Beekman, Jeffrey M. Clevers, Hans |
description | Adenine base editing (ABE) enables enzymatic conversion from A-T into G-C base pairs. ABE holds promise for clinical application, as it does not depend on the introduction of double-strand breaks, contrary to conventional CRISPR/Cas9-mediated genome engineering. Here, we describe a cystic fibrosis (CF) intestinal organoid biobank, representing 664 patients, of which ~20% can theoretically be repaired by ABE. We apply SpCas9-ABE (PAM recognition sequence: NGG) and xCas9-ABE (PAM recognition sequence: NGN) on four selected CF organoid samples. Genetic and functional repair was obtained in all four cases, while whole-genome sequencing (WGS) of corrected lines of two patients did not detect off-target mutations. These observations exemplify the value of large, patient-derived organoid biobanks representing hereditary disease and indicate that ABE may be safely applied in human cells.
[Display omitted]
•664 patients and 154 CFTR mutations represented in an organoid biobank•Adenine base editors enable efficient repair of nonsense mutations in CFTR•xCas9 increases the target scope of CFTR repair in our biobank•Adenine base editors cause no detectable off-target effects during repair
Here, we show the generation of an extensive cystic fibrosis patient-derived intestinal organoid biobank. We use this biobank to study gene correction by adenine base editors and show genetic repair of four selected nonsense mutations in CFTR without any genome-wide off-target effects on canonical and non-canonical PAMs. |
doi_str_mv | 10.1016/j.stem.2020.01.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2362087666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590920300199</els_id><sourcerecordid>2362087666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-7bcf3c9c77ad238c11f8dddb9148de740fe8f372f7ad4ee1670afa3b7979c5403</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMotlb_gAfJ0cvWZLPdbMBLu7RaqFaqHiVkk1lJbTc12Qr996ZUPQoPZkLePGY-hC4p6VNC85tlP7Sw7qckJX1Co8QR6tKCDxLBOT-OvWBZMhBEdNBZCEtCBpwSfoo6LCVFxoqii97KxfT5aZGMVACDhwYa2wAeG9s6H3DpvAfd4kfXBIjCD9tWtTa-sG2wwuUutFbjia28CzbguX9XjbMGj6yrVPNxjk5qtQpw8VN76HUyfinvk9n8bloOZ4nO8rxNeKVrpoXmXJmUFZrSujDGVIJmhQGekRqKmvG0jv8ZAM05UbViFRdc6EFGWA9dH3I33n1uIbRybYOG1Uo14LZBpiyPF_M8z6M1PVh1XDl4qOXG27XyO0mJ3GOVS7nHKvdYJaFRIg5d_eRvqzWYv5FfjtFwezBAvPLLgpdBW2g0GLsHKI2z_-V_A88GiVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2362087666</pqid></control><display><type>article</type><title>CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Geurts, Maarten H. ; de Poel, Eyleen ; Amatngalim, Gimano D. ; Oka, Rurika ; Meijers, Fleur M. ; Kruisselbrink, Evelien ; van Mourik, Peter ; Berkers, Gitte ; de Winter-de Groot, Karin M. ; Michel, Sabine ; Muilwijk, Danya ; Aalbers, Bente L. ; Mullenders, Jasper ; Boj, Sylvia F. ; Suen, Sylvia W.F. ; Brunsveld, Jesse E. ; Janssens, Hettie M. ; Mall, Marcus A. ; Graeber, Simon Y. ; van Boxtel, Ruben ; van der Ent, Cornelis K. ; Beekman, Jeffrey M. ; Clevers, Hans</creator><creatorcontrib>Geurts, Maarten H. ; de Poel, Eyleen ; Amatngalim, Gimano D. ; Oka, Rurika ; Meijers, Fleur M. ; Kruisselbrink, Evelien ; van Mourik, Peter ; Berkers, Gitte ; de Winter-de Groot, Karin M. ; Michel, Sabine ; Muilwijk, Danya ; Aalbers, Bente L. ; Mullenders, Jasper ; Boj, Sylvia F. ; Suen, Sylvia W.F. ; Brunsveld, Jesse E. ; Janssens, Hettie M. ; Mall, Marcus A. ; Graeber, Simon Y. ; van Boxtel, Ruben ; van der Ent, Cornelis K. ; Beekman, Jeffrey M. ; Clevers, Hans</creatorcontrib><description>Adenine base editing (ABE) enables enzymatic conversion from A-T into G-C base pairs. ABE holds promise for clinical application, as it does not depend on the introduction of double-strand breaks, contrary to conventional CRISPR/Cas9-mediated genome engineering. Here, we describe a cystic fibrosis (CF) intestinal organoid biobank, representing 664 patients, of which ~20% can theoretically be repaired by ABE. We apply SpCas9-ABE (PAM recognition sequence: NGG) and xCas9-ABE (PAM recognition sequence: NGN) on four selected CF organoid samples. Genetic and functional repair was obtained in all four cases, while whole-genome sequencing (WGS) of corrected lines of two patients did not detect off-target mutations. These observations exemplify the value of large, patient-derived organoid biobanks representing hereditary disease and indicate that ABE may be safely applied in human cells.
[Display omitted]
•664 patients and 154 CFTR mutations represented in an organoid biobank•Adenine base editors enable efficient repair of nonsense mutations in CFTR•xCas9 increases the target scope of CFTR repair in our biobank•Adenine base editors cause no detectable off-target effects during repair
Here, we show the generation of an extensive cystic fibrosis patient-derived intestinal organoid biobank. We use this biobank to study gene correction by adenine base editors and show genetic repair of four selected nonsense mutations in CFTR without any genome-wide off-target effects on canonical and non-canonical PAMs.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2020.01.019</identifier><identifier>PMID: 32084388</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenine ; adenine base-editing ; Biological Specimen Banks ; Cas9 off-target analysis ; CFTR mutations ; Clustered Regularly Interspaced Short Palindromic Repeats ; Codon, Nonsense ; CRISPR-Associated Protein 9 - genetics ; CRISPR-Cas Systems - genetics ; CRISPR/Cas9 ; cystic fibrosis ; Cystic Fibrosis - genetics ; evolved Cas9 proteins ; Gene Editing ; genome editing ; human intestinal organoids ; Humans ; organoid biobank ; Organoids - metabolism ; patient-derived adult stem cells</subject><ispartof>Cell stem cell, 2020-04, Vol.26 (4), p.503-510.e7</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-7bcf3c9c77ad238c11f8dddb9148de740fe8f372f7ad4ee1670afa3b7979c5403</citedby><cites>FETCH-LOGICAL-c466t-7bcf3c9c77ad238c11f8dddb9148de740fe8f372f7ad4ee1670afa3b7979c5403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1934590920300199$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32084388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geurts, Maarten H.</creatorcontrib><creatorcontrib>de Poel, Eyleen</creatorcontrib><creatorcontrib>Amatngalim, Gimano D.</creatorcontrib><creatorcontrib>Oka, Rurika</creatorcontrib><creatorcontrib>Meijers, Fleur M.</creatorcontrib><creatorcontrib>Kruisselbrink, Evelien</creatorcontrib><creatorcontrib>van Mourik, Peter</creatorcontrib><creatorcontrib>Berkers, Gitte</creatorcontrib><creatorcontrib>de Winter-de Groot, Karin M.</creatorcontrib><creatorcontrib>Michel, Sabine</creatorcontrib><creatorcontrib>Muilwijk, Danya</creatorcontrib><creatorcontrib>Aalbers, Bente L.</creatorcontrib><creatorcontrib>Mullenders, Jasper</creatorcontrib><creatorcontrib>Boj, Sylvia F.</creatorcontrib><creatorcontrib>Suen, Sylvia W.F.</creatorcontrib><creatorcontrib>Brunsveld, Jesse E.</creatorcontrib><creatorcontrib>Janssens, Hettie M.</creatorcontrib><creatorcontrib>Mall, Marcus A.</creatorcontrib><creatorcontrib>Graeber, Simon Y.</creatorcontrib><creatorcontrib>van Boxtel, Ruben</creatorcontrib><creatorcontrib>van der Ent, Cornelis K.</creatorcontrib><creatorcontrib>Beekman, Jeffrey M.</creatorcontrib><creatorcontrib>Clevers, Hans</creatorcontrib><title>CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Adenine base editing (ABE) enables enzymatic conversion from A-T into G-C base pairs. ABE holds promise for clinical application, as it does not depend on the introduction of double-strand breaks, contrary to conventional CRISPR/Cas9-mediated genome engineering. Here, we describe a cystic fibrosis (CF) intestinal organoid biobank, representing 664 patients, of which ~20% can theoretically be repaired by ABE. We apply SpCas9-ABE (PAM recognition sequence: NGG) and xCas9-ABE (PAM recognition sequence: NGN) on four selected CF organoid samples. Genetic and functional repair was obtained in all four cases, while whole-genome sequencing (WGS) of corrected lines of two patients did not detect off-target mutations. These observations exemplify the value of large, patient-derived organoid biobanks representing hereditary disease and indicate that ABE may be safely applied in human cells.
[Display omitted]
•664 patients and 154 CFTR mutations represented in an organoid biobank•Adenine base editors enable efficient repair of nonsense mutations in CFTR•xCas9 increases the target scope of CFTR repair in our biobank•Adenine base editors cause no detectable off-target effects during repair
Here, we show the generation of an extensive cystic fibrosis patient-derived intestinal organoid biobank. We use this biobank to study gene correction by adenine base editors and show genetic repair of four selected nonsense mutations in CFTR without any genome-wide off-target effects on canonical and non-canonical PAMs.</description><subject>Adenine</subject><subject>adenine base-editing</subject><subject>Biological Specimen Banks</subject><subject>Cas9 off-target analysis</subject><subject>CFTR mutations</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>Codon, Nonsense</subject><subject>CRISPR-Associated Protein 9 - genetics</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>CRISPR/Cas9</subject><subject>cystic fibrosis</subject><subject>Cystic Fibrosis - genetics</subject><subject>evolved Cas9 proteins</subject><subject>Gene Editing</subject><subject>genome editing</subject><subject>human intestinal organoids</subject><subject>Humans</subject><subject>organoid biobank</subject><subject>Organoids - metabolism</subject><subject>patient-derived adult stem cells</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFLAzEQhYMotlb_gAfJ0cvWZLPdbMBLu7RaqFaqHiVkk1lJbTc12Qr996ZUPQoPZkLePGY-hC4p6VNC85tlP7Sw7qckJX1Co8QR6tKCDxLBOT-OvWBZMhBEdNBZCEtCBpwSfoo6LCVFxoqii97KxfT5aZGMVACDhwYa2wAeG9s6H3DpvAfd4kfXBIjCD9tWtTa-sG2wwuUutFbjia28CzbguX9XjbMGj6yrVPNxjk5qtQpw8VN76HUyfinvk9n8bloOZ4nO8rxNeKVrpoXmXJmUFZrSujDGVIJmhQGekRqKmvG0jv8ZAM05UbViFRdc6EFGWA9dH3I33n1uIbRybYOG1Uo14LZBpiyPF_M8z6M1PVh1XDl4qOXG27XyO0mJ3GOVS7nHKvdYJaFRIg5d_eRvqzWYv5FfjtFwezBAvPLLgpdBW2g0GLsHKI2z_-V_A88GiVw</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Geurts, Maarten H.</creator><creator>de Poel, Eyleen</creator><creator>Amatngalim, Gimano D.</creator><creator>Oka, Rurika</creator><creator>Meijers, Fleur M.</creator><creator>Kruisselbrink, Evelien</creator><creator>van Mourik, Peter</creator><creator>Berkers, Gitte</creator><creator>de Winter-de Groot, Karin M.</creator><creator>Michel, Sabine</creator><creator>Muilwijk, Danya</creator><creator>Aalbers, Bente L.</creator><creator>Mullenders, Jasper</creator><creator>Boj, Sylvia F.</creator><creator>Suen, Sylvia W.F.</creator><creator>Brunsveld, Jesse E.</creator><creator>Janssens, Hettie M.</creator><creator>Mall, Marcus A.</creator><creator>Graeber, Simon Y.</creator><creator>van Boxtel, Ruben</creator><creator>van der Ent, Cornelis K.</creator><creator>Beekman, Jeffrey M.</creator><creator>Clevers, Hans</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200402</creationdate><title>CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank</title><author>Geurts, Maarten H. ; de Poel, Eyleen ; Amatngalim, Gimano D. ; Oka, Rurika ; Meijers, Fleur M. ; Kruisselbrink, Evelien ; van Mourik, Peter ; Berkers, Gitte ; de Winter-de Groot, Karin M. ; Michel, Sabine ; Muilwijk, Danya ; Aalbers, Bente L. ; Mullenders, Jasper ; Boj, Sylvia F. ; Suen, Sylvia W.F. ; Brunsveld, Jesse E. ; Janssens, Hettie M. ; Mall, Marcus A. ; Graeber, Simon Y. ; van Boxtel, Ruben ; van der Ent, Cornelis K. ; Beekman, Jeffrey M. ; Clevers, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-7bcf3c9c77ad238c11f8dddb9148de740fe8f372f7ad4ee1670afa3b7979c5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenine</topic><topic>adenine base-editing</topic><topic>Biological Specimen Banks</topic><topic>Cas9 off-target analysis</topic><topic>CFTR mutations</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>Codon, Nonsense</topic><topic>CRISPR-Associated Protein 9 - genetics</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>CRISPR/Cas9</topic><topic>cystic fibrosis</topic><topic>Cystic Fibrosis - genetics</topic><topic>evolved Cas9 proteins</topic><topic>Gene Editing</topic><topic>genome editing</topic><topic>human intestinal organoids</topic><topic>Humans</topic><topic>organoid biobank</topic><topic>Organoids - metabolism</topic><topic>patient-derived adult stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geurts, Maarten H.</creatorcontrib><creatorcontrib>de Poel, Eyleen</creatorcontrib><creatorcontrib>Amatngalim, Gimano D.</creatorcontrib><creatorcontrib>Oka, Rurika</creatorcontrib><creatorcontrib>Meijers, Fleur M.</creatorcontrib><creatorcontrib>Kruisselbrink, Evelien</creatorcontrib><creatorcontrib>van Mourik, Peter</creatorcontrib><creatorcontrib>Berkers, Gitte</creatorcontrib><creatorcontrib>de Winter-de Groot, Karin M.</creatorcontrib><creatorcontrib>Michel, Sabine</creatorcontrib><creatorcontrib>Muilwijk, Danya</creatorcontrib><creatorcontrib>Aalbers, Bente L.</creatorcontrib><creatorcontrib>Mullenders, Jasper</creatorcontrib><creatorcontrib>Boj, Sylvia F.</creatorcontrib><creatorcontrib>Suen, Sylvia W.F.</creatorcontrib><creatorcontrib>Brunsveld, Jesse E.</creatorcontrib><creatorcontrib>Janssens, Hettie M.</creatorcontrib><creatorcontrib>Mall, Marcus A.</creatorcontrib><creatorcontrib>Graeber, Simon Y.</creatorcontrib><creatorcontrib>van Boxtel, Ruben</creatorcontrib><creatorcontrib>van der Ent, Cornelis K.</creatorcontrib><creatorcontrib>Beekman, Jeffrey M.</creatorcontrib><creatorcontrib>Clevers, Hans</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geurts, Maarten H.</au><au>de Poel, Eyleen</au><au>Amatngalim, Gimano D.</au><au>Oka, Rurika</au><au>Meijers, Fleur M.</au><au>Kruisselbrink, Evelien</au><au>van Mourik, Peter</au><au>Berkers, Gitte</au><au>de Winter-de Groot, Karin M.</au><au>Michel, Sabine</au><au>Muilwijk, Danya</au><au>Aalbers, Bente L.</au><au>Mullenders, Jasper</au><au>Boj, Sylvia F.</au><au>Suen, Sylvia W.F.</au><au>Brunsveld, Jesse E.</au><au>Janssens, Hettie M.</au><au>Mall, Marcus A.</au><au>Graeber, Simon Y.</au><au>van Boxtel, Ruben</au><au>van der Ent, Cornelis K.</au><au>Beekman, Jeffrey M.</au><au>Clevers, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2020-04-02</date><risdate>2020</risdate><volume>26</volume><issue>4</issue><spage>503</spage><epage>510.e7</epage><pages>503-510.e7</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Adenine base editing (ABE) enables enzymatic conversion from A-T into G-C base pairs. ABE holds promise for clinical application, as it does not depend on the introduction of double-strand breaks, contrary to conventional CRISPR/Cas9-mediated genome engineering. Here, we describe a cystic fibrosis (CF) intestinal organoid biobank, representing 664 patients, of which ~20% can theoretically be repaired by ABE. We apply SpCas9-ABE (PAM recognition sequence: NGG) and xCas9-ABE (PAM recognition sequence: NGN) on four selected CF organoid samples. Genetic and functional repair was obtained in all four cases, while whole-genome sequencing (WGS) of corrected lines of two patients did not detect off-target mutations. These observations exemplify the value of large, patient-derived organoid biobanks representing hereditary disease and indicate that ABE may be safely applied in human cells.
[Display omitted]
•664 patients and 154 CFTR mutations represented in an organoid biobank•Adenine base editors enable efficient repair of nonsense mutations in CFTR•xCas9 increases the target scope of CFTR repair in our biobank•Adenine base editors cause no detectable off-target effects during repair
Here, we show the generation of an extensive cystic fibrosis patient-derived intestinal organoid biobank. We use this biobank to study gene correction by adenine base editors and show genetic repair of four selected nonsense mutations in CFTR without any genome-wide off-target effects on canonical and non-canonical PAMs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32084388</pmid><doi>10.1016/j.stem.2020.01.019</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-5909 |
ispartof | Cell stem cell, 2020-04, Vol.26 (4), p.503-510.e7 |
issn | 1934-5909 1875-9777 |
language | eng |
recordid | cdi_proquest_miscellaneous_2362087666 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals |
subjects | Adenine adenine base-editing Biological Specimen Banks Cas9 off-target analysis CFTR mutations Clustered Regularly Interspaced Short Palindromic Repeats Codon, Nonsense CRISPR-Associated Protein 9 - genetics CRISPR-Cas Systems - genetics CRISPR/Cas9 cystic fibrosis Cystic Fibrosis - genetics evolved Cas9 proteins Gene Editing genome editing human intestinal organoids Humans organoid biobank Organoids - metabolism patient-derived adult stem cells |
title | CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR-Based%20Adenine%20Editors%20Correct%20Nonsense%20Mutations%20in%20a%20Cystic%20Fibrosis%20Organoid%20Biobank&rft.jtitle=Cell%20stem%20cell&rft.au=Geurts,%20Maarten%20H.&rft.date=2020-04-02&rft.volume=26&rft.issue=4&rft.spage=503&rft.epage=510.e7&rft.pages=503-510.e7&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2020.01.019&rft_dat=%3Cproquest_cross%3E2362087666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2362087666&rft_id=info:pmid/32084388&rft_els_id=S1934590920300199&rfr_iscdi=true |