Facilitate Gas Transport through Metal‐Organic Polyhedra Constructed Porous Liquid Membrane

Type II porous liquids are demonstrated to be promise porous materials. However, the category of porous hosts is very limited. Here, a porous host metal–organic polyhedra (MOP‐18) is reported to construct type II porous liquids. MOP‐18 is dissolved into 15‐crown‐5 as an individual cage (5 nm). Both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-03, Vol.16 (11), p.e1907016-n/a
Hauptverfasser: Deng, Zheng, Ying, Wen, Gong, Ke, Zeng, Yu‐Jia, Yan, Youguo, Peng, Xinsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e1907016
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Deng, Zheng
Ying, Wen
Gong, Ke
Zeng, Yu‐Jia
Yan, Youguo
Peng, Xinsheng
description Type II porous liquids are demonstrated to be promise porous materials. However, the category of porous hosts is very limited. Here, a porous host metal–organic polyhedra (MOP‐18) is reported to construct type II porous liquids. MOP‐18 is dissolved into 15‐crown‐5 as an individual cage (5 nm). Both the molecular dynamics simulations and experimental gravimetric CO2 solubility test indicate that the inner cavity of MOP‐18 in porous liquids is unoccupied by 15‐crown‐5 and is accessible to CO2. Thus, the prepared porous liquids show enhanced gas solubility. Furthermore, the prepared porous liquid is encapsulated into graphene oxide (GO) nanoslits to form a GO‐supported porous liquid membrane (GO‐SPLM). Owing to the empty cavity of MOP‐18 unit cages in porous liquids that reduces the gas diffusion barrier, GO‐SPLM significantly enhances the permeability of gas. A type II porous liquid is constructed by using MOP‐18 and 15‐crown‐5 as the porous host and bulky solvent, respectively. The existence of permanent porosity in porous liquid is confirmed by both the molecular dynamics simulations and experimental date. The unoccupied cavity in the porous liquid can be used for gas storage and facilitating the gas transportation.
doi_str_mv 10.1002/smll.201907016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2362070356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378747202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-83b0734e1b85a0661a8375875843e71ef9f71f6cc57505da2b4c7c7729aa9bce3</originalsourceid><addsrcrecordid>eNqFkE1LwzAYx4Mobr5cPUrBi5fOvLRJe5ThptAxwXmUkqbplpG2W5Iiu_kR_Ix-EjM2J3gRHshD-D1__vwAuEJwgCDEd7bWeoAhSiGDiB6BPqKIhDTB6fFhR7AHzqxdQkgQjtgp6BEME8KSuA_eRlworRx3MhhzG8wMb-yqNS5wC9N280UwkY7rr4_PqZnzRongudWbhSwND4ZtY53phJOl__W0DTK17lTpb-rCB8kLcFJxbeXl_j0Hr6OH2fAxzKbjp-F9FooIQRompICMRBIVScwhpYj7dnHiJyKSIVmlFUMVFSJmMYxLjotIMMEYTjlPCyHJObjd5a5Mu-6kdXmtrJBa-w6-Vo4JxV4QialHb_6gy7YzjW_nKZawiGGIPTXYUcK01hpZ5Sujam42OYL5Vny-FZ8fxPuD631sV9SyPOA_pj2Q7oB3peXmn7j8ZZJlv-HfmCqQLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378747202</pqid></control><display><type>article</type><title>Facilitate Gas Transport through Metal‐Organic Polyhedra Constructed Porous Liquid Membrane</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Deng, Zheng ; Ying, Wen ; Gong, Ke ; Zeng, Yu‐Jia ; Yan, Youguo ; Peng, Xinsheng</creator><creatorcontrib>Deng, Zheng ; Ying, Wen ; Gong, Ke ; Zeng, Yu‐Jia ; Yan, Youguo ; Peng, Xinsheng</creatorcontrib><description>Type II porous liquids are demonstrated to be promise porous materials. However, the category of porous hosts is very limited. Here, a porous host metal–organic polyhedra (MOP‐18) is reported to construct type II porous liquids. MOP‐18 is dissolved into 15‐crown‐5 as an individual cage (5 nm). Both the molecular dynamics simulations and experimental gravimetric CO2 solubility test indicate that the inner cavity of MOP‐18 in porous liquids is unoccupied by 15‐crown‐5 and is accessible to CO2. Thus, the prepared porous liquids show enhanced gas solubility. Furthermore, the prepared porous liquid is encapsulated into graphene oxide (GO) nanoslits to form a GO‐supported porous liquid membrane (GO‐SPLM). Owing to the empty cavity of MOP‐18 unit cages in porous liquids that reduces the gas diffusion barrier, GO‐SPLM significantly enhances the permeability of gas. A type II porous liquid is constructed by using MOP‐18 and 15‐crown‐5 as the porous host and bulky solvent, respectively. The existence of permanent porosity in porous liquid is confirmed by both the molecular dynamics simulations and experimental date. The unoccupied cavity in the porous liquid can be used for gas storage and facilitating the gas transportation.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201907016</identifier><identifier>PMID: 32083785</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Diffusion barriers ; Gas solubility ; Gas transport ; gas transportation ; Gaseous diffusion ; Graphene ; Gravimetry ; liquid membrane ; Liquid membranes ; Liquids ; metal–organic polyhedra ; Molecular dynamics ; MOP‐18 ; Nanotechnology ; Polyhedra ; porous liquid ; Porous materials ; type II porous liquids</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-03, Vol.16 (11), p.e1907016-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-83b0734e1b85a0661a8375875843e71ef9f71f6cc57505da2b4c7c7729aa9bce3</citedby><cites>FETCH-LOGICAL-c4106-83b0734e1b85a0661a8375875843e71ef9f71f6cc57505da2b4c7c7729aa9bce3</cites><orcidid>0000-0002-5355-4854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201907016$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201907016$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32083785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Zheng</creatorcontrib><creatorcontrib>Ying, Wen</creatorcontrib><creatorcontrib>Gong, Ke</creatorcontrib><creatorcontrib>Zeng, Yu‐Jia</creatorcontrib><creatorcontrib>Yan, Youguo</creatorcontrib><creatorcontrib>Peng, Xinsheng</creatorcontrib><title>Facilitate Gas Transport through Metal‐Organic Polyhedra Constructed Porous Liquid Membrane</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Type II porous liquids are demonstrated to be promise porous materials. However, the category of porous hosts is very limited. Here, a porous host metal–organic polyhedra (MOP‐18) is reported to construct type II porous liquids. MOP‐18 is dissolved into 15‐crown‐5 as an individual cage (5 nm). Both the molecular dynamics simulations and experimental gravimetric CO2 solubility test indicate that the inner cavity of MOP‐18 in porous liquids is unoccupied by 15‐crown‐5 and is accessible to CO2. Thus, the prepared porous liquids show enhanced gas solubility. Furthermore, the prepared porous liquid is encapsulated into graphene oxide (GO) nanoslits to form a GO‐supported porous liquid membrane (GO‐SPLM). Owing to the empty cavity of MOP‐18 unit cages in porous liquids that reduces the gas diffusion barrier, GO‐SPLM significantly enhances the permeability of gas. A type II porous liquid is constructed by using MOP‐18 and 15‐crown‐5 as the porous host and bulky solvent, respectively. The existence of permanent porosity in porous liquid is confirmed by both the molecular dynamics simulations and experimental date. The unoccupied cavity in the porous liquid can be used for gas storage and facilitating the gas transportation.</description><subject>Carbon dioxide</subject><subject>Diffusion barriers</subject><subject>Gas solubility</subject><subject>Gas transport</subject><subject>gas transportation</subject><subject>Gaseous diffusion</subject><subject>Graphene</subject><subject>Gravimetry</subject><subject>liquid membrane</subject><subject>Liquid membranes</subject><subject>Liquids</subject><subject>metal–organic polyhedra</subject><subject>Molecular dynamics</subject><subject>MOP‐18</subject><subject>Nanotechnology</subject><subject>Polyhedra</subject><subject>porous liquid</subject><subject>Porous materials</subject><subject>type II porous liquids</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LwzAYx4Mobr5cPUrBi5fOvLRJe5ThptAxwXmUkqbplpG2W5Iiu_kR_Ix-EjM2J3gRHshD-D1__vwAuEJwgCDEd7bWeoAhSiGDiB6BPqKIhDTB6fFhR7AHzqxdQkgQjtgp6BEME8KSuA_eRlworRx3MhhzG8wMb-yqNS5wC9N280UwkY7rr4_PqZnzRongudWbhSwND4ZtY53phJOl__W0DTK17lTpb-rCB8kLcFJxbeXl_j0Hr6OH2fAxzKbjp-F9FooIQRompICMRBIVScwhpYj7dnHiJyKSIVmlFUMVFSJmMYxLjotIMMEYTjlPCyHJObjd5a5Mu-6kdXmtrJBa-w6-Vo4JxV4QialHb_6gy7YzjW_nKZawiGGIPTXYUcK01hpZ5Sujam42OYL5Vny-FZ8fxPuD631sV9SyPOA_pj2Q7oB3peXmn7j8ZZJlv-HfmCqQLg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Deng, Zheng</creator><creator>Ying, Wen</creator><creator>Gong, Ke</creator><creator>Zeng, Yu‐Jia</creator><creator>Yan, Youguo</creator><creator>Peng, Xinsheng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5355-4854</orcidid></search><sort><creationdate>20200301</creationdate><title>Facilitate Gas Transport through Metal‐Organic Polyhedra Constructed Porous Liquid Membrane</title><author>Deng, Zheng ; Ying, Wen ; Gong, Ke ; Zeng, Yu‐Jia ; Yan, Youguo ; Peng, Xinsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-83b0734e1b85a0661a8375875843e71ef9f71f6cc57505da2b4c7c7729aa9bce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon dioxide</topic><topic>Diffusion barriers</topic><topic>Gas solubility</topic><topic>Gas transport</topic><topic>gas transportation</topic><topic>Gaseous diffusion</topic><topic>Graphene</topic><topic>Gravimetry</topic><topic>liquid membrane</topic><topic>Liquid membranes</topic><topic>Liquids</topic><topic>metal–organic polyhedra</topic><topic>Molecular dynamics</topic><topic>MOP‐18</topic><topic>Nanotechnology</topic><topic>Polyhedra</topic><topic>porous liquid</topic><topic>Porous materials</topic><topic>type II porous liquids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Zheng</creatorcontrib><creatorcontrib>Ying, Wen</creatorcontrib><creatorcontrib>Gong, Ke</creatorcontrib><creatorcontrib>Zeng, Yu‐Jia</creatorcontrib><creatorcontrib>Yan, Youguo</creatorcontrib><creatorcontrib>Peng, Xinsheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Zheng</au><au>Ying, Wen</au><au>Gong, Ke</au><au>Zeng, Yu‐Jia</au><au>Yan, Youguo</au><au>Peng, Xinsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facilitate Gas Transport through Metal‐Organic Polyhedra Constructed Porous Liquid Membrane</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>16</volume><issue>11</issue><spage>e1907016</spage><epage>n/a</epage><pages>e1907016-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Type II porous liquids are demonstrated to be promise porous materials. However, the category of porous hosts is very limited. Here, a porous host metal–organic polyhedra (MOP‐18) is reported to construct type II porous liquids. MOP‐18 is dissolved into 15‐crown‐5 as an individual cage (5 nm). Both the molecular dynamics simulations and experimental gravimetric CO2 solubility test indicate that the inner cavity of MOP‐18 in porous liquids is unoccupied by 15‐crown‐5 and is accessible to CO2. Thus, the prepared porous liquids show enhanced gas solubility. Furthermore, the prepared porous liquid is encapsulated into graphene oxide (GO) nanoslits to form a GO‐supported porous liquid membrane (GO‐SPLM). Owing to the empty cavity of MOP‐18 unit cages in porous liquids that reduces the gas diffusion barrier, GO‐SPLM significantly enhances the permeability of gas. A type II porous liquid is constructed by using MOP‐18 and 15‐crown‐5 as the porous host and bulky solvent, respectively. The existence of permanent porosity in porous liquid is confirmed by both the molecular dynamics simulations and experimental date. The unoccupied cavity in the porous liquid can be used for gas storage and facilitating the gas transportation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32083785</pmid><doi>10.1002/smll.201907016</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5355-4854</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-03, Vol.16 (11), p.e1907016-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2362070356
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Diffusion barriers
Gas solubility
Gas transport
gas transportation
Gaseous diffusion
Graphene
Gravimetry
liquid membrane
Liquid membranes
Liquids
metal–organic polyhedra
Molecular dynamics
MOP‐18
Nanotechnology
Polyhedra
porous liquid
Porous materials
type II porous liquids
title Facilitate Gas Transport through Metal‐Organic Polyhedra Constructed Porous Liquid Membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facilitate%20Gas%20Transport%20through%20Metal%E2%80%90Organic%20Polyhedra%20Constructed%20Porous%20Liquid%20Membrane&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Deng,%20Zheng&rft.date=2020-03-01&rft.volume=16&rft.issue=11&rft.spage=e1907016&rft.epage=n/a&rft.pages=e1907016-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201907016&rft_dat=%3Cproquest_cross%3E2378747202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378747202&rft_id=info:pmid/32083785&rfr_iscdi=true